2019 AIME II Problems/Problem 11

Revision as of 17:43, 22 March 2019 by Franchester (talk | contribs)

Problem

Triangle $ABC$ has side lengths $AB=7, BC=8,$ and $CA=9.$ Circle $\omega_1$ passes through $B$ and is tangent to line $AC$ at $A.$ Circle $\omega_2$ passes through $C$ and is tangent to line $AB$ at $A.$ Let $K$ be the intersection of circles $\omega_1$ and $\omega_2$ not equal to $A.$ Then $AK=m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution

Note that from the tangency condition that the supplement of $\angle CAB$ with respects to lines $AB$ and $AC$ are equal to $\angle AKB$ and $\angle AKC$, respectively, so from tangent-chord, \[\angle AKC=\angle AKB=180^{\circ}-\angle BAC\] Also note that $\angle ABK=\angle KAC$, so $\triangle AKB\sim \triangle CKA$. Using similarity ratios, we can easily find \[AK^2=BK*KC\] However, since $AB=7$ and $CA=9$, we can use similarity ratios to get \[BK=\frac{7}{9}AK, CK=\frac{9}{7}AK\] Now we use Law of Cosines on $\triangle AKB$: From reverse Law of Cosines, $\cos{\angle BAC}=\frac{11}{21}\implies \cos{(180^{\circ}-\angle BAC)}=-\frac{11}{21}$. This gives us \[AK^2+\frac{49}{81}AK^2+\frac{22}{27}AK^2=49\] \[\implies \frac{196}{81}AK^2=49\] \[AK=\frac{9}{2}\] so our answer is $9+2=\boxed{011}$. -franchester

See Also

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png