Difference between revisions of "2019 AIME I Problems/Problem 12"

m (fixed mathematical term)
(See Also)
Line 34: Line 34:
 
solving the above quadratic yields <math>r=9+\sqrt{221}</math> so our answer is <math>9+221=\boxed{230}</math>
 
solving the above quadratic yields <math>r=9+\sqrt{221}</math> so our answer is <math>9+221=\boxed{230}</math>
  
==See Also==
+
==Solution 3==
 +
I would like to use a famous method namely coni method.
 +
 
 +
Statement .If we consider there complex number <math>A,B,C</math> in argand plane then <math>\angle ABC =\arg{\frac{B-C}{B-A}}</math>.
 +
 
 +
According to the question given, we can assume ,<math>A= f(f(z)),B=f(z),C= x</math> respectively.
 +
 
 +
WLOG,<math>Z_1= \frac{f(f(z))-f(z)}{z-f(z)}</math>.
 +
According to the question <math>\arg{Z_1}=\frac{\pi}{2}</math>.
 +
 
 +
So,<math>\Re (Z_1)=0</math>.
 +
 
 +
Now, <math>Z_1=\frac{z(z-19)(z+1)(z-20)}{-z(z-20)}</math>.
 +
 
 +
<math>\implies Z_1= -(z^2-18z-19)</math>.
 +
WLOG,<math>z=a+11i</math> .where <math>a=m+\sqrt{n}</math>.
 +
 
 +
So,<math>\Re (Z_1)= -(a^2-18a-140)</math>.
 +
Solving,<math>a^2-18a-140=0</math> .get ,
 +
 
 +
<math>a=9</math>±<math>\sqrt{221}</math>.
 +
So, possible value of <math>a=9+\sqrt{221}</math>.
 +
 
 +
<math>\boxed{m+n=230}</math>.
 +
~ftheftics.
 +
==See also==
 
{{AIME box|year=2019|n=I|num-b=11|num-a=13}}
 
{{AIME box|year=2019|n=I|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:47, 3 January 2020

Problem 12

Given $f(z) = z^2-19z$, there are complex numbers $z$ with the property that $z$, $f(z)$, and $f(f(z))$ are the vertices of a right triangle in the complex plane with a right angle at $f(z)$. There are positive integers $m$ and $n$ such that one such value of $z$ is $m+\sqrt{n}+11i$. Find $m+n$.

Solution 1

Notice that we must have \[\frac{f(f(z))-f(z)}{f(z)-z}=-\frac{f(f(z))-f(z)}{z-f(z)}\in i\mathbb R .\]However, $f(t)-t=t(t-20)$, so \begin{align*} \frac{f(f(z))-f(z)}{f(z)-z}&=\frac{(z^2-19z)(z^2-19z-20)}{z(z-20)}\\ &=\frac{z(z-19)(z-20)(z+1)}{z(z-20)}\\ &=(z-19)(z+1)\\ &=(z-9)^2-100. \end{align*} Then, the real part of $(z-9)^2$ is $100$. Since $\text{Im}(z-9)=\text{Im}(z)=11$, let $z-9=a+11i$. Then, \[100=\text{Re}((a+11i)^2)=a^2-121\implies a=\pm\sqrt{221}.\]It follows that $z=9+\sqrt{221}+11i$, and the requested sum is $9+221=\boxed{230}$.

(Solution by TheUltimate123)

Solution 2

We will use the fact that segments $AB$ and $BC$ are perpendicular in the complex plane if and only if $\frac{a-b}{b-c}\in i\mathbb{R}$. To prove this, when dividing two complex numbers you subtract the angle of one from the other, and if the two are perpendicular, subtracting these angles will yield an imaginary number with no real part.

Now to apply this: \[\frac{f(z)-z}{f(f(z))-f(z)}\in i\mathbb{R}\] \[\frac{z^2-19z-z}{(z^2-19z)^2-19(z^2-19z)-(z^2-19z)}\] \[\frac{z^2-20z}{z^4-38z^3+341z^2+380z}\] \[\frac{z(z-20)}{z(z+1)(z-19)(z-20)}\] \[\frac{1}{(z+1)(z-19)}\in i\mathbb{R}\]

The factorization of the nasty denominator above is made easier with the intuition that $(z-20)$ must be a divisor for the problem to lead anywhere. Now we know $(z+1)(z-19)\in i\mathbb{R}$ so using the fact that the imaginary part of $z$ is $11i$ and calling the real part r,

\[(r+1+11i)(r-19+11i)\in i\mathbb{R}\] \[r^2-18r-140=0\]

solving the above quadratic yields $r=9+\sqrt{221}$ so our answer is $9+221=\boxed{230}$

Solution 3

I would like to use a famous method namely coni method.

Statement .If we consider there complex number $A,B,C$ in argand plane then $\angle ABC =\arg{\frac{B-C}{B-A}}$.

According to the question given, we can assume ,$A= f(f(z)),B=f(z),C= x$ respectively.

WLOG,$Z_1= \frac{f(f(z))-f(z)}{z-f(z)}$. According to the question $\arg{Z_1}=\frac{\pi}{2}$.

So,$\Re (Z_1)=0$.

Now, $Z_1=\frac{z(z-19)(z+1)(z-20)}{-z(z-20)}$.

$\implies Z_1= -(z^2-18z-19)$. WLOG,$z=a+11i$ .where $a=m+\sqrt{n}$.

So,$\Re (Z_1)= -(a^2-18a-140)$. Solving,$a^2-18a-140=0$ .get ,

$a=9$±$\sqrt{221}$. So, possible value of $a=9+\sqrt{221}$.

$\boxed{m+n=230}$. ~ftheftics.

See also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png