2019 AIME I Problems/Problem 14

Revision as of 20:09, 18 May 2020 by Wlm7 (talk | contribs) (Solution)

Problem 14

Find the least odd prime factor of $2019^8+1$.


We know that $2019^8 \equiv -1 \pmod{p}$ for some prime $p$. We want to find the smallest odd possible value of $p$. By squaring both sides of the congruence, we find $2019^{16} \equiv 1 \pmod{p}$.

Since $2019^{16} \equiv 1 \pmod{p}$, the order of $2019$ modulo $p$ is $1, 2, 4, 8,$ or $16$.

However, if the order of $2019$ modulo $p$ is $1, 2, 4,$ or $8,$ then $2019^8$ will be equivalent to $1 \pmod{p},$ which contradicts the given requirement that $2019^8\equiv -1\pmod{p}$.

Therefore, the order of $2019$ modulo $p$ is $16$. Because all orders modulo $p$ divide $\phi(p)$, we see that $\phi(p)$ is a multiple of 16. As $p$ is prime, $\phi(p) = p(1 - \frac{1}{p}) = p - 1$. Therefore, $p\equiv1 \pmod{16}$. The two smallest primes equivalent to $1 \pmod{16}$ are $17$ and $97$. As $2019^8 \not\equiv -1 \pmod{17}$ and $2019^8 \equiv -1 \pmod{97}$, our answer is $\boxed{97}$.

Note to solution

$\phi(k)$ is the Euler Totient Function of integer $k$. Euler's Totient Theorem: define $\phi(p)$ as the number of positive integers less than $p$ but relatively prime to $p$, then we have \[\phi(p)=p\cdot \prod^n_{i=1}(1-\frac{1}{p_i})\] where $p_1,p_2,...,p_n$ are the prime factors of $p$. Then, we have \[a^{\phi(p)} \equiv 1\ (\mathrm{mod}\ p)\] if $\gcd(a,p)=1$.

Furthermore, the order $a$ modulo $n$ for an integer $a$ relatively prime to $n$ is defined as the smallest positive integer $d$ such that $a^{d} \equiv 1\pmod n$. An important property of the order $d$ is that $d|\phi(n)$.

Video Solution

On The Spot STEM:



See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS