TRAIN FOR THE AMC 10 WITH AoPS
Thousands of top-scorers on the AMC 10 have used our Introduction series of textbooks and Art of Problem Solving Volume 1 for their training.
CHECK OUT THE BOOKS

Difference between revisions of "2019 AMC 10A Problems"

(Problem 21)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2019|ab=A}}
 +
 
==Problem 1==
 
==Problem 1==
 
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
 
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
Line 89: Line 91:
  
 
<math>\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35</math>
 
<math>\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35</math>
 +
 +
==See also==
 +
{{AMC10 box|year=2019|ab=A|before=[[2018 AMC 10B Problems]]|after=[[2019 AMC 10B Problems]]}}
 +
{{MAA Notice}}

Revision as of 16:35, 9 February 2019

2019 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of \[2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?\] $\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4$

Problem 2

What is the hundreds digit of $(20!-15!)\ ?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Problem 3

Ana and Bonita were born on the same date in different years, $n$ years apart. Last year Ana was $5$ times as old as Bonita. This year Ana's age is the square of Bonita's age. What is $n?$

$\textbf{(A) } 3 \qquad\textbf{(B) } 5 \qquad\textbf{(C) } 9 \qquad\textbf{(D) } 12 \qquad\textbf{(E) } 15$

Problem 4

A box contains $28$ red balls, $20$ green balls, $19$ yellow balls, $13$ blue balls, $11$ white balls, and $9$ black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least $15$ balls of a single color will be drawn$?$

$\textbf{(A) } 75 \qquad\textbf{(B) } 76 \qquad\textbf{(C) } 79 \qquad\textbf{(D) } 84 \qquad\textbf{(E) } 91$

Problem 5

What is the greatest number of consecutive integers whose sum is $45 ?$

$\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120$

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Let $\Delta ABC$ be an isosceles triangle with $BC = AC$ and $\angle ACB = 40^{\circ}$. Contruct the circle with diameter $\overline{BC}$, and let $D$ and $E$ be the other intersection points of the circle with the sides $\overline{AC}$ and $\overline{AB}$, respectively. Let $F$ be the intersection of the diagonals of the quadrilateral $BCDE$. What is the degree measure of $\angle BFC ?$

$\textbf{(A) } 90 \qquad\textbf{(B) } 100 \qquad\textbf{(C) } 105 \qquad\textbf{(D) } 110 \qquad\textbf{(E) } 120$

Problem 14

For a set of four distinct lines in a plane, there are exactly $N$ distinct points that lie on two or more of the lines. What is the sum of all possible values of $N$?

$\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21$

Problem 15

A sequence of numbers is defined recursively by $a_1 = 1$, $a_2 = \frac{3}{7}$, and \[a_n=\frac{a_{n-2} \cdot a_{n-1}}{2a_{n-2} - a_{n-1}}\]for all $n \geq 3$ Then $a_{2019}$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive inegers. What is $p+q ?$

$\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078$

Problem 16

The figure below shows $13$ circles of radius $1$ within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius $1 ?$

[asy]unitsize(20);filldraw(circle((0,0),2*sqrt(3)+1),rgb(0.5,0.5,0.5));filldraw(circle((-2,0),1),white);filldraw(circle((0,0),1),white);filldraw(circle((2,0),1),white);filldraw(circle((1,sqrt(3)),1),white);filldraw(circle((3,sqrt(3)),1),white);filldraw(circle((-1,sqrt(3)),1),white);filldraw(circle((-3,sqrt(3)),1),white);filldraw(circle((1,-1*sqrt(3)),1),white);filldraw(circle((3,-1*sqrt(3)),1),white);filldraw(circle((-1,-1*sqrt(3)),1),white);filldraw(circle((-3,-1*sqrt(3)),1),white);filldraw(circle((0,2*sqrt(3)),1),white);filldraw(circle((0,-2*sqrt(3)),1),white);[/asy]

$\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)$

Problem 17

A child builds towers using identically shaped cubes of different color. How many different towers with a height $8$ cubes can the child build with $2$ red cubes, $3$ blue cubes, and $4$ green cubes? (One cube will be left out.)

$\textbf{(A) } 24 \qquad\textbf{(B) } 288 \qquad\textbf{(C) } 312 \qquad\textbf{(D) } 1,260 \qquad\textbf{(E) } 40,320$

Problem 18

For some positive integer $k$, the repeating base-$k$ representation of the (base-ten) fraction $\frac{7}{51}$ is $0.\overline{23}_k = 0.232323..._k$. What is $k$?


$\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16 \qquad\textbf{(E) } 17$

Problem 19

What is the least possible value of \[(x+1)(x+2)(x+3)(x+4)+2019\]where $x$ is a real number?

$\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021$

Problem 20

Problem 21

A sphere with center $O$ has radius 6. A triangle with sides of length $15$, $15$, and $24$ is situated in space so that each of its sides is tangent to the sphere. What is the distance between $O$ and the plane determined by the triangle?

$\textbf{(A) } 2\sqrt{3} \qquad \textbf{(B) }4 \qquad \textbf{(C) } 3\sqrt{2} \qquad \textbf{(D) } 2\sqrt{5} \qquad \textbf{(E) } 5$

Problem 22

Problem 23

Problem 24

Problem 25

For how many integers $n$ between $1$ and $50$, inclusive, is \[\frac{(n^2-1)!}{(n!)^{n}}\] an integer? (Recall that $0!=1$.)

$\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35$

See also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2018 AMC 10B Problems
Followed by
2019 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png