Difference between revisions of "2019 AMC 10A Problems/Problem 19"

(Solution)
(Solution 2)
Line 8: Line 8:
 
==Solution==
 
==Solution==
 
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math> which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{(B) 2018}</math>
 
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math> which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{(B) 2018}</math>
 +
 +
==Solution 2==
 +
 +
Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>
 +
 +
 +
We can use difference of squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a+\frac{9}{16}</math>.
 +
 +
 +
Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{2018}</math>
 +
 +
-WannabeCharmander
  
 
==See Also==
 
==See Also==

Revision as of 19:13, 9 February 2019

Problem

What is the least possible value of \[(x+1)(x+2)(x+3)(x+4)+2019\]where $x$ is a real number?

$\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021$

Solution

Grouping the first and last terms and two middle terms gives $(x^2+5x+4)(x^2+5x+6)+2019$ which can be simplified as $(x^2+5x+5)^2-1+2019$. Since squares are nonnegative, the answer is $\boxed{(B) 2018}$

Solution 2

Let $a=x+\tfrac{5}{2}$. Then $(x+1)(x+2)(x+3)(x+4)$ becomes $(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})$


We can use difference of squares to get $(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})$, and expand this to get $a^4-\tfrac{5}{2}a+\frac{9}{16}$.


Refactor this by completing the square to get $(a^2-\tfrac{5}{4})^2-1$, which has a minimum value of $-1$. The answer is thus $2019-1=\boxed{2018}$

-WannabeCharmander

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png