Difference between revisions of "2019 AMC 10A Problems/Problem 19"
(→Solution 4) |
Kevinmathz (talk | contribs) (→Solution 5 (using the answer choices)) |
||
Line 43: | Line 43: | ||
Using the answer choices, we see that choices <math>C</math>, <math>D</math>, and <math>E</math> are impossible, since <math>(x+1)(x+2)(x+3)(x+4)</math> can actually be negative (as seen when e.g. <math>x = -\frac{3}{2}</math>). Plug in <math>x = -\frac{3}{2}</math> to see that it becomes <math>2019 - \frac{15}{16}</math>, so round this to <math>\boxed{\textbf{(B) }2018}</math>. | Using the answer choices, we see that choices <math>C</math>, <math>D</math>, and <math>E</math> are impossible, since <math>(x+1)(x+2)(x+3)(x+4)</math> can actually be negative (as seen when e.g. <math>x = -\frac{3}{2}</math>). Plug in <math>x = -\frac{3}{2}</math> to see that it becomes <math>2019 - \frac{15}{16}</math>, so round this to <math>\boxed{\textbf{(B) }2018}</math>. | ||
+ | |||
+ | We can also see that the limit of the function is at least -1 since at the minimum, two of the numbers are less than 1, but two are between 1 and 2. | ||
==Video Solution== | ==Video Solution== |
Revision as of 08:39, 20 September 2019
Contents
Problem
What is the least possible value of where is a real number?
Solution 1
Grouping the first and last terms and two middle terms gives , which can be simplified to . Noting that squares are nonnegative, and verifying that for some real , the answer is .
Solution 2
Let . Then the expression becomes .
We can now use the difference of two squares to get , and expand this to get .
Refactor this by completing the square to get , which has a minimum value of . The answer is thus .
Solution 3 (calculus)
Similar to Solution 1, grouping the first and last terms and the middle terms, we get .
Letting , we get the expression . Now, we can find the critical points of to minimize the function:
To minimize the result, we use . Hence, the minimum is , so .
Note: We could also have used the result that minimum/maximum point of a parabola occurs at .
Solution 4
The expression is negative when an odd number of the factors are negative. This happens when or . Plugging in or yields , which is very close to . Thus the answer is .
Solution 5 (using the answer choices)
Using the answer choices, we see that choices , , and are impossible, since can actually be negative (as seen when e.g. ). Plug in to see that it becomes , so round this to .
We can also see that the limit of the function is at least -1 since at the minimum, two of the numbers are less than 1, but two are between 1 and 2.
Video Solution
For those who want a video solution: https://www.youtube.com/watch?v=Mfa7j2BoNjI
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.