Difference between revisions of "2019 AMC 10A Problems/Problem 2"

(Solution)
(Solution 4)
(19 intermediate revisions by 13 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
  
== Solution ==
+
==Video Solution 1==
  
The last three digits of <math>n!</math> for all <math>n\geq15</math> is <math>000</math>, because there are at least three 2s and three 5s in its prime factorization. Because <math>0-0=0</math>, The answer is \boxed{(A) 0}$.
+
https://youtu.be/J4Bqztwjyxw
 +
 
 +
Education, The Study of Everything
 +
 
 +
 
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/V1fY0oLSHvo
 +
 
 +
~savannahsolver
 +
 
 +
== Video Solution == 3
 +
https://youtu.be/zfChnbMGLVQ?t=3899
 +
 
 +
~ pi_is_3.14
 +
 
 +
==Solution 3==
 +
Because we know that <math>5^3</math> is a factor of <math>15!</math> and <math>20!</math>, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also <math>\boxed{\text{(A) }0}</math>.
 +
 
 +
 
 +
==Solution 4==
 +
 
 +
We can clearly see that <math>20! \equiv 15! \equiv 0 \pmod{100}</math>, so <math>20! - 15! \equiv 0 \pmod{100}</math> meaning that the last two digits are equal to <math>00</math> and the hundreds digit is <math>0</math>, or <math>\boxed{\text{(A)}}</math>.
 +
 
 +
--abhinavg0627
  
 
==See Also==
 
==See Also==

Revision as of 15:13, 30 June 2021

Problem

What is the hundreds digit of $(20!-15!)?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Video Solution 1

https://youtu.be/J4Bqztwjyxw

Education, The Study of Everything


Video Solution 2

https://youtu.be/V1fY0oLSHvo

~savannahsolver

== Video Solution == 3 https://youtu.be/zfChnbMGLVQ?t=3899

~ pi_is_3.14

Solution 3

Because we know that $5^3$ is a factor of $15!$ and $20!$, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also $\boxed{\text{(A) }0}$.


Solution 4

We can clearly see that $20! \equiv 15! \equiv 0 \pmod{100}$, so $20! - 15! \equiv 0 \pmod{100}$ meaning that the last two digits are equal to $00$ and the hundreds digit is $0$, or $\boxed{\text{(A)}}$.

--abhinavg0627

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png