Difference between revisions of "2019 AMC 10B Problems/Problem 20"

(Solution)
(Solution 2 (Video Solution but quicker and if you don't know how to find d))
(29 intermediate revisions by 16 users not shown)
Line 1: Line 1:
 
{{duplicate|[[2019 AMC 10B Problems|2019 AMC 10B #20]] and [[2019 AMC 12B Problems|2019 AMC 12B #15]]}}
 
{{duplicate|[[2019 AMC 10B Problems|2019 AMC 10B #20]] and [[2019 AMC 12B Problems|2019 AMC 12B #15]]}}
==Problem==
+
 
 +
== Problem ==
 
As shown in the figure, line segment <math>\overline{AD}</math> is trisected by points <math>B</math> and <math>C</math> so that <math>AB=BC=CD=2.</math> Three semicircles of radius <math>1,</math> <math>\overarc{AEB},\overarc{BFC},</math> and <math>\overarc{CGD},</math> have their diameters on <math>\overline{AD},</math> and are tangent to line <math>EG</math> at <math>E,F,</math> and <math>G,</math> respectively. A circle of radius <math>2</math> has its center on <math>F. </math> The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form  
 
As shown in the figure, line segment <math>\overline{AD}</math> is trisected by points <math>B</math> and <math>C</math> so that <math>AB=BC=CD=2.</math> Three semicircles of radius <math>1,</math> <math>\overarc{AEB},\overarc{BFC},</math> and <math>\overarc{CGD},</math> have their diameters on <math>\overline{AD},</math> and are tangent to line <math>EG</math> at <math>E,F,</math> and <math>G,</math> respectively. A circle of radius <math>2</math> has its center on <math>F. </math> The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form  
 
<cmath>\frac{a}{b}\cdot\pi-\sqrt{c}+d,</cmath>
 
<cmath>\frac{a}{b}\cdot\pi-\sqrt{c}+d,</cmath>
Line 26: Line 27:
 
label("$D$", (3,-1), S);
 
label("$D$", (3,-1), S);
 
</asy>
 
</asy>
 +
 
<math>\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17</math>
 
<math>\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17</math>
==Solution==
 
Divide the circle into four parts: The top semicircle: (A), the bottom sector with arc length 120 degrees: (B), the triangle formed by the radii of (A) and the chord: (C), and the four parts which are the corners of a circle inscribed in a square (D). The area is just (A) + (B) - (C) + (D).
 
 
Area of (A): <math>2\pi</math>
 
  
Area of (B): <math>\frac{4\pi}{3}</math>
+
== Solutions ==
 +
=== Solution 1 ===
 +
Divide the circle into four parts: the top semicircle by connecting E, F, and G(<math>A</math>); the bottom sector (<math>B</math>), whose arc angle is <math>120^{\circ}</math> because the large circle's radius is <math>2</math> and the short length (the radius of the smaller semicircles) is <math>1</math>, giving a <math>30^{\circ}-60^{\circ}-90^{\circ}</math> triangle; the triangle formed by the radii of <math>A</math> and the chord (<math>C</math>); and the four parts which are the corners of a circle inscribed in a square (<math>D</math>). Then the area is <math>A + B - C + D</math> (in <math>B-C</math>, we find the area of the bottom shaded region, and in <math>D</math> we find the area of the shaded region above the semicircles but below the diameter).
  
Area of (C): Radius of 2, distance of 1 to BC, creates 2 30-60-90 triangles, so area of it is <math>2\sqrt{3}*1/2=\sqrt{3}</math>
+
The area of <math>A</math> is <math>\frac{1}{2} \pi \cdot 2^2 = 2\pi</math>.
  
Area of (D): <math>4*1-1/4*\pi*4=4-\pi</math>
+
The area of <math>B</math> is <math>\frac{120^{\circ}}{360^{\circ}} \pi \cdot 2^2 = \frac{4\pi}{3}</math>.
  
Total sum: <math>\frac{7\pi}{3}-\sqrt{3}+4</math>
+
For the area of <math>C</math>, the radius of <math>2</math>, and the distance of <math>1</math> (the smaller semicircles' radius) to <math>BC</math>, creates two <math>30^{\circ}-60^{\circ}-90^{\circ}</math> triangles, so <math>C</math>'s area is <math>2 \cdot \frac{1}{2} \cdot 1 \cdot \sqrt{3} = \sqrt{3}</math>.
  
<math>7+3+3+4=\boxed{17}</math>
+
The area of <math>D</math> is <math>4 \cdot 1-\frac{1}{4}\pi \cdot 2^2=4-\pi</math>.
  
For this solution to be a tad more clear, we are finding the area of the sector in B of 120 degrees because the large circle radius is 2, and the short length (the radius of the semicircle) is 1, and so the triangle is a 30-60-90 triangle. In A, we find the top semicircle part, in B minus C, we find the area of the shaded region above the semicircles but below the diameter, and in D we find the bottom shaded region.
+
Hence, finding <math>A+B-C+D</math>, the desired area is <math>\frac{7\pi}{3}-\sqrt{3}+4</math>, so the answer is <math>7+3+3+4=\boxed{\textbf{(E) } 17}</math>.
  
==See Also==
+
=== Video Solution ===
 +
Video Solution from Youtube- https://www.youtube.com/watch?v=ZbWOZMfXtL8
  
 +
== See Also ==
 
{{AMC10 box|year=2019|ab=B|num-b=19|num-a=21}}
 
{{AMC10 box|year=2019|ab=B|num-b=19|num-a=21}}
 
{{AMC12 box|year=2019|ab=B|num-b=14|num-a=16}}
 
{{AMC12 box|year=2019|ab=B|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:28, 3 January 2021

The following problem is from both the 2019 AMC 10B #20 and 2019 AMC 12B #15, so both problems redirect to this page.

Problem

As shown in the figure, line segment $\overline{AD}$ is trisected by points $B$ and $C$ so that $AB=BC=CD=2.$ Three semicircles of radius $1,$ $\overarc{AEB},\overarc{BFC},$ and $\overarc{CGD},$ have their diameters on $\overline{AD},$ and are tangent to line $EG$ at $E,F,$ and $G,$ respectively. A circle of radius $2$ has its center on $F.$ The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form \[\frac{a}{b}\cdot\pi-\sqrt{c}+d,\] where $a,b,c,$ and $d$ are positive integers and $a$ and $b$ are relatively prime. What is $a+b+c+d$?

[asy] size(6cm); filldraw(circle((0,0),2), grey); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("$A$",(-3,-1),S); dot((-2,0)); label("$E$",(-2,0),NW); dot((-1,-1)); label("$B$",(-1,-1),S); dot((0,0)); label("$F$",(0,0),N); dot((1,-1)); label("$C$",(1,-1), S); dot((2,0)); label("$G$", (2,0),NE); dot((3,-1)); label("$D$", (3,-1), S); [/asy]

$\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17$

Solutions

Solution 1

Divide the circle into four parts: the top semicircle by connecting E, F, and G($A$); the bottom sector ($B$), whose arc angle is $120^{\circ}$ because the large circle's radius is $2$ and the short length (the radius of the smaller semicircles) is $1$, giving a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle; the triangle formed by the radii of $A$ and the chord ($C$); and the four parts which are the corners of a circle inscribed in a square ($D$). Then the area is $A + B - C + D$ (in $B-C$, we find the area of the bottom shaded region, and in $D$ we find the area of the shaded region above the semicircles but below the diameter).

The area of $A$ is $\frac{1}{2} \pi \cdot 2^2 = 2\pi$.

The area of $B$ is $\frac{120^{\circ}}{360^{\circ}} \pi \cdot 2^2 = \frac{4\pi}{3}$.

For the area of $C$, the radius of $2$, and the distance of $1$ (the smaller semicircles' radius) to $BC$, creates two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, so $C$'s area is $2 \cdot \frac{1}{2} \cdot 1 \cdot \sqrt{3} = \sqrt{3}$.

The area of $D$ is $4 \cdot 1-\frac{1}{4}\pi \cdot 2^2=4-\pi$.

Hence, finding $A+B-C+D$, the desired area is $\frac{7\pi}{3}-\sqrt{3}+4$, so the answer is $7+3+3+4=\boxed{\textbf{(E) } 17}$.

Video Solution

Video Solution from Youtube- https://www.youtube.com/watch?v=ZbWOZMfXtL8

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png