Difference between revisions of "2019 AMC 10B Problems/Problem 22"

m (Problem)
(31 intermediate revisions by 19 users not shown)
Line 3: Line 3:
 
==Problem==
 
==Problem==
  
Raashan, Sylvia, and Ted play the following game. Each starts with \$1. A bell rings every 15 seconds, at which time each of the players who currently has mondey simultaneously chooses one of the other two players independently and at random and gives \$1 to that player. What is the probability that after the bell has rung 2019 times, each player will have \$1?
+
Raashan, Sylvia, and Ted play the following game. Each starts with <math> \$1</math>. A bell rings every <math>15</math> seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives <math>\$1</math> to that player. What is the probability that after the bell has rung <math>2019</math> times, each player will have <math>\$1</math>? (For example, Raashan and Ted may each decide to give <math>\$1</math> to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have <math>\$0</math>, Sylvia will have <math>\$2</math>, and Ted will have <math>\$1</math>, and that is the end of the first round of play. In the second round Rashaan has no money to give, but Sylvia and Ted might choose each other to give their <math> \$1</math> to, and the holdings will be the same at the end of the second round.)
  
For example, Raashan and Ted may each decide to give \$1 to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have \$1, Sylvia will have \$2, and Ted will have \$1, and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their \$1 to, and the holdings will be the same at the end of the second round.
+
<math>\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}</math>
 
 
<math>\textbf{(A) }\frac{1}{7} \qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{1}{3} \qquad\textbf{(D) }\frac{1}{2} \qquad\textbf{(E) }\frac{2}{3}</math>
 
  
 
==Solution 1==
 
==Solution 1==
 +
On the first turn, each player starts off with <math>\$1</math>. Each turn after that, there are only two possibilities: either everyone stays at <math>\$1</math>, which we will write as <math>(1-1-1)</math>, or the distribution of money becomes <math>\$2-\$1-\$0</math> in some order, which we write as <math>(2-1-0)</math>. (<math>(3-0-0)</math> cannot be achieved since either(1)the person cannot give money to himself or (2)there are a maximum of 2 dollars being distributed and the person has nothing to start with). We will consider these two states separately.
  
On the first turn, each player starts off with <math>\$1</math> each. There are now only two situations possible, after a single move: either everyone stays at <math>\$1</math>, or the layout becomes <math>\$2-\$1-\$0</math> (in any order). Only <math>2</math> combinations end up with this outcome: <math>S-T-R</math> and <math>T-R-S</math>. On the other hand, given the interchangeability of the three people, <math>S-R-R</math>, <math>T-R-R</math>, <math>S-R-S</math>, <math>S-T-S</math>, <math>T-T-R</math>, and <math>T-T-S</math> can all be reproduced. Since each one of the scenarios is equally likely, there is a <math>\frac{2}{8} = \frac{1}{4}</math> chance to get the <math>2-1-0</math> type of format.
+
In the <math>(1-1-1)</math> state, each person has two choices for whom to give their dollar to, meaning there are <math>2^3=8</math> possible ways that the money can be rearranged. Note that there are only two ways that we can reach <math>(1-1-1)</math> again:
  
If one arrives at <math>1-1-1</math> at any point in time, we have essentially "cycled" back to the beginning. Similarly, if the setup becomes <math>2-1-0</math> (again, with <math>\frac{3}{4}</math> probability), assume <math>\textrm{WOLOG}</math> that <math>R</math> has <math>\$2</math>, player <math>S</math> received a <math>\$1 amoun</math>t, and participant <math>T</math> gets <math>\$0</math>. We can say that the possibilities are <math>S-T</math>, <math>S-R</math>, <math>T-R</math>, and <math>T-T</math>, which lead to the following combinations of <math>1-1-1</math>, <math>2-1-0</math>, <math>2-0-1</math>, and <math>1-0-2</math>, respectively.
+
1. Raashan gives his money to Sylvia, who gives her money to Ted, who gives his money to Raashan.
  
If one of the latter three are true, we return to the normal result, where the map remains at <math>\$2-\$1-\$0</math> or some variation thereof. If the first case holds, then their game simply returns to its initial base of <math>1-1-1</math> – either way, the probability of getting the <math>1-1-1</math> mixture has a <math>\frac{1}{4}</math> probability beyond round <math>n \in \Z 1</math> and <math>\therefore</math>the bell must ring at least once for this to be true: which we know it does. <math>\boxed{\textbf{(B) }\frac{1}{4}}</math>,
+
2. Raashan gives his money to Ted, who gives his money to Sylvia, who gives her money to Raashan.
  
--anna0kear.
+
Thus, the probability of staying in the <math>(1-1-1)</math> state is <math>\frac{1}{4}</math>, while the probability of going to the <math>(2-1-0)</math> state is <math>\frac{3}{4}</math> (we can check that the 6 other possibilities lead to <math>(2-1-0)</math>)
  
==Solution 2==
 
  
On the first turn, each player starts off with <math>\text{\$1}</math> each. Each turn after that, there are only two situations possible: either everyone stays at <math>\text{\$1}</math> <math>\text{(1-1-1)}</math>, or the distribution of money becomes <math>\text{\$2-\$1-\$0}</math>, in any order <math>\text{(2-1-0)}</math>.
+
In the <math>(2-1-0)</math> state, we will label the person with <math>\$2</math> as person A, the person with <math>\$1</math> as person B, and the person with <math>\$0</math> as person C. Person A has two options for whom to give money to, and person B has 2 options for whom to give money to, meaning there are total <math>2\cdot 2 = 4</math> ways the money can be redistributed. The only way that the distribution can return to <math>(1-1-1)</math> is if A gives <math>\$1</math> to B, and B gives <math>\$1</math> to C. We check the other possibilities to find that they all lead back to <math>(2-1-0)</math>. Thus, the probability of going to the <math>(1-1-1)</math> state is <math>\frac{1}{4}</math>, while the probability of staying in the <math>(2-1-0)</math> state is <math>\frac{3}{4}</math>.
  
(Note: <math>\text{S-T-R}</math> means that <math>\text{R}</math> gives his money to <math>\text{S}</math>, <math>\text{S}</math> gives her money to <math>\text{T}</math>, and <math>\text{T}</math> gives his money to <math>\text{R}</math>.)
+
No matter which state we are in, the probability of going to the <math>(1-1-1)</math> state is always <math>\frac{1}{4}</math>. This means that, after the bell rings 2018 times, regardless of what state the money distribution is in, there is a <math>\frac{1}{4}</math> probability of going to the <math>(1-1-1)</math> state after the 2019th bell ring. Thus, our answer is simply <math>\boxed{\textbf{(B) } \frac{1}{4}}</math>.
  
From the <math>\text{1-1-1}</math> state, there are two ways to distribute the money so that it stays in a <math>\text{1-1-1}</math> state: <math>\text{S-T-R}</math> and <math>\text{T-R-S}</math>. There are 6 ways to change the state to <math>\text{2-1-0}</math>: <math>\text{S-R-R}</math>, <math>\text{T-R-R}</math>, <math>\text{S-R-S}</math>, <math>\text{S-T-S}</math>, <math>\text{T-T-R}</math>, and <math>\text{T-T-S}</math>. This means that the probability that the state stays <math>\text{1-1-1}</math> is <math>\textstyle\frac{2}{8}=\frac{1}{4}</math>, and the probability that the state changes to <math>\text{2-1-0}</math> is <math>\textstyle\frac{6}{8}=\frac{3}{4}</math>.
+
==Solution 2 (Symmetry)==
 +
After the first ring, either nothing changes, or someone has <math>\$2</math>. No one can have <math>\$3</math>, since in that hypothetical round, that person would have to give away <math>\$1</math>.  
  
From the <math>\text{2-1-0}</math> state, there is one way to change the state back to <math>\text{1-1-1}</math>: <math>\text{S-T-0}</math>. (We can assume that <math>\text{R}</math> has <math>\text{\$2}</math>, <math>\text{S}</math> has <math>\text{\$1}</math>, and <math>\text{T}</math> has <math>\text{\$0}</math> since only the distribution of money matters, not the specific people.) There are three ways to keep the <math>\text{2-1-0}</math> state: <math>\text{S-R-0}</math>, <math>\text{T-R-0}</math>, <math>\text{T-T-0}</math>. This means that the probability that the state changes to <math>\text{1-1-1}</math> is <math>\textstyle\frac{1}{4}</math>, and the probability that the state stays <math>\text{2-1-0}</math> is <math>\textstyle\frac{3}{4}</math>.
 
  
We can see that there will always be a <math>\textstyle\frac{1}{4}</math> chance that the money is distributed <math>\text{1-1-1}</math> (as long as the bell rings once), so the answer is <math>\boxed{\textbf{(B) }\frac{1}{4}}</math>.
+
Thus, the outcome is either <math>1-1-1</math> or six symmetrical cases where one person gets <math>\$2</math> (e.g. a <math>1-2-0</math> or <math>2-1-0</math> split). There are two ways for the three people to exchange dollars to get to the same <math>1-1-1</math> result. As such, there are 8 overall possibilities (which make sense, since each person has 2 choices when giving away his or her dollar, resulting in <math>2^3</math> total possibilities). As such, from the <math>1-1-1</math> case, there is a <math>1/4</math> chance of returning to <math>1-1-1</math>.
  
==Solution 3==
 
  
After each bell's ring, there are two situations: either they each have <math>\text{\$1}</math> each, or one of them has <math>\text{\$2}</math>, another has <math>\text{\$1}</math>, and the third has <math>\text{\$0}</math>. In each of these cases, we need to calculate the probability of returning to the <math>\text{1-1-1}</math> state.
+
Without loss of generality, take the <math>1-2-0</math> case. Only 2 people can give money, so there are now <math>2^2</math> possible outcomes after the bell rings. It either decomposes back into <math>1-1-1</math>, remains unchanged, turns into <math>0-1-2</math>, or turns into <math>0-2-1</math>. As such, from the <math>1-1-1</math> case, there is a <math>1/4</math> chance of returning to <math>1-1-1</math>. Notice that this works for any of the 6 cases.
  
Case 1: Each player has <math>\text{\$1}</math>. WLOG, let Raashan give his dollar to Sylvia. Then Sylvia must give her dollar to Ted and Ted must give his dollar to Raashan, which happens with <math>\frac12 \cdot \frac12 = \frac14</math> probability.
 
  
Case 2: One player has <math>\text{\$2}</math>, another has <math>\text{\$1}</math>, and the third has <math>\text{\$0}</math>. WLOG, let Raashan have <math>\text{\$2}</math>, Sylvia have <math>\text{\$1}</math>, and Ted have <math>\text{\$0}</math>. Then Raashan must give his dollar to Sylvia and Sylvia must give her dollar to Ted, which happens with <math>\frac12 \cdot \frac12 = \frac14</math> probability.
+
Since the starting state has a <math>1/4</math> chance of remaining unchanged, and each of the different 6 symmetric states all also have a <math>1/4</math> chance of reverting back to <math>1-1-1</math>, the chance of it being 1-1-1 after any state is always <math>\boxed{\textbf{(B) } \frac{1}{4}}</math>
  
Since the probability of returning to the <math>\text{1-1-1}</math> state is <math>\frac14</math> no matter what the situation is, the probability that each player will have <math>\text{\$1}</math> after the bell rings <math>2019</math> times is <math>\boxed{\textbf{(B) }\frac{1}{4}}</math>.
+
==Video Solution==
 +
https://youtu.be/XT440PjAFmQ
  
 
==See Also==
 
==See Also==

Revision as of 21:52, 16 April 2020

The following problem is from both the 2019 AMC 10B #22 and 2019 AMC 12B #19, so both problems redirect to this page.

Problem

Raashan, Sylvia, and Ted play the following game. Each starts with $$1$. A bell rings every $15$ seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $$1$ to that player. What is the probability that after the bell has rung $2019$ times, each player will have $$1$? (For example, Raashan and Ted may each decide to give $$1$ to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $$0$, Sylvia will have $$2$, and Ted will have $$1$, and that is the end of the first round of play. In the second round Rashaan has no money to give, but Sylvia and Ted might choose each other to give their $$1$ to, and the holdings will be the same at the end of the second round.)

$\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}$

Solution 1

On the first turn, each player starts off with $$1$. Each turn after that, there are only two possibilities: either everyone stays at $$1$, which we will write as $(1-1-1)$, or the distribution of money becomes $$2-$1-$0$ in some order, which we write as $(2-1-0)$. ($(3-0-0)$ cannot be achieved since either(1)the person cannot give money to himself or (2)there are a maximum of 2 dollars being distributed and the person has nothing to start with). We will consider these two states separately.

In the $(1-1-1)$ state, each person has two choices for whom to give their dollar to, meaning there are $2^3=8$ possible ways that the money can be rearranged. Note that there are only two ways that we can reach $(1-1-1)$ again:

1. Raashan gives his money to Sylvia, who gives her money to Ted, who gives his money to Raashan.

2. Raashan gives his money to Ted, who gives his money to Sylvia, who gives her money to Raashan.

Thus, the probability of staying in the $(1-1-1)$ state is $\frac{1}{4}$, while the probability of going to the $(2-1-0)$ state is $\frac{3}{4}$ (we can check that the 6 other possibilities lead to $(2-1-0)$)


In the $(2-1-0)$ state, we will label the person with $$2$ as person A, the person with $$1$ as person B, and the person with $$0$ as person C. Person A has two options for whom to give money to, and person B has 2 options for whom to give money to, meaning there are total $2\cdot 2 = 4$ ways the money can be redistributed. The only way that the distribution can return to $(1-1-1)$ is if A gives $$1$ to B, and B gives $$1$ to C. We check the other possibilities to find that they all lead back to $(2-1-0)$. Thus, the probability of going to the $(1-1-1)$ state is $\frac{1}{4}$, while the probability of staying in the $(2-1-0)$ state is $\frac{3}{4}$.

No matter which state we are in, the probability of going to the $(1-1-1)$ state is always $\frac{1}{4}$. This means that, after the bell rings 2018 times, regardless of what state the money distribution is in, there is a $\frac{1}{4}$ probability of going to the $(1-1-1)$ state after the 2019th bell ring. Thus, our answer is simply $\boxed{\textbf{(B) } \frac{1}{4}}$.

Solution 2 (Symmetry)

After the first ring, either nothing changes, or someone has $$2$. No one can have $$3$, since in that hypothetical round, that person would have to give away $$1$.


Thus, the outcome is either $1-1-1$ or six symmetrical cases where one person gets $$2$ (e.g. a $1-2-0$ or $2-1-0$ split). There are two ways for the three people to exchange dollars to get to the same $1-1-1$ result. As such, there are 8 overall possibilities (which make sense, since each person has 2 choices when giving away his or her dollar, resulting in $2^3$ total possibilities). As such, from the $1-1-1$ case, there is a $1/4$ chance of returning to $1-1-1$.


Without loss of generality, take the $1-2-0$ case. Only 2 people can give money, so there are now $2^2$ possible outcomes after the bell rings. It either decomposes back into $1-1-1$, remains unchanged, turns into $0-1-2$, or turns into $0-2-1$. As such, from the $1-1-1$ case, there is a $1/4$ chance of returning to $1-1-1$. Notice that this works for any of the 6 cases.


Since the starting state has a $1/4$ chance of remaining unchanged, and each of the different 6 symmetric states all also have a $1/4$ chance of reverting back to $1-1-1$, the chance of it being 1-1-1 after any state is always $\boxed{\textbf{(B) } \frac{1}{4}}$

Video Solution

https://youtu.be/XT440PjAFmQ

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png