Difference between revisions of "2019 AMC 10B Problems/Problem 6"

Line 1: Line 1:
You take the weight off of me
+
There is a real <math>n</math> such that <math>(n+1)! + (n+2)! = n! \cdot 440</math>. What is the sum of the digits of <math>n</math>?
 +
 
 +
<math>\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math>
 +
 
 +
==Solution==
 +
<math>(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!</math>
 +
<math>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</math>
 +
<math>n + 1 + n^2 + 3n + 2 = 440</math>
 +
<math>n^2 + 4n - 437</math>
 +
 
 +
<math>\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow \boxed{D) 19}</math>
 +
 
 +
iron

Revision as of 13:38, 14 February 2019

There is a real $n$ such that $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?

$\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution

$(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!$ $n![n+1 + (n+2)(n+1)] = 440 \cdot n!$ $n + 1 + n^2 + 3n + 2 = 440$ $n^2 + 4n - 437$

$\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow \boxed{D) 19}$

iron