Difference between revisions of "2019 AMC 10B Problems/Problem 6"

(Solution)
Line 1: Line 1:
 +
{{duplicate|[[2019 AMC 10B Problems|2019 AMC 10B #6]] and [[2019 AMC 12B Problems|2019 AMC 12B #4]]}}
 +
 +
==Problem==
 +
 
There is a real <math>n</math> such that <math>(n+1)! + (n+2)! = n! \cdot 440</math>. What is the sum of the digits of <math>n</math>?
 
There is a real <math>n</math> such that <math>(n+1)! + (n+2)! = n! \cdot 440</math>. What is the sum of the digits of <math>n</math>?
  
 
<math>\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math>
 
<math>\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math>
  
==Solution==
+
==Solution 1==
 +
 
 
<cmath>(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!</cmath>
 
<cmath>(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!</cmath>
 
<cmath>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</cmath>
 
<cmath>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</cmath>
Line 12: Line 17:
  
 
iron
 
iron
 +
 +
==Solution 2==
 +
 +
Dividing both sides by <math>n!</math> gives
 +
<cmath>(n+1)+(n+2)(n+1)=440 \Rightarrow n^2+4n-437=0 \Rightarrow (n-19)(n+23)=0.</cmath>
 +
Since <math>n</math> is positive, <math>n=19</math>. The answer is <math>1+9=10\Rightarrow \boxed{C}.</math>
 +
 +
==Solution 3==
 +
n=19
 +
sum is 10 (SuperWill)
 +
 +
 +
==Solution 4==
 +
 +
Divide both sides by <math>n!</math>:
 +
 +
 +
<math>(n+1)+(n+1)(n+2)=440</math>
 +
 +
factor out <math>(n+1)</math>:
 +
 +
<math>(n+1)*(n+3)=440</math>
 +
 +
 +
prime factorization of <math>440</math> and a bit of experimentation gives us <math>n+1=20</math> and <math>n+3=22</math>, so <math>\boxed{n=19}</math>.
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2019|ab=B|num-b=5|num-a=7}}
 +
{{AMC12 box|year=2019|ab=B|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Revision as of 15:28, 14 February 2019

The following problem is from both the 2019 AMC 10B #6 and 2019 AMC 12B #4, so both problems redirect to this page.

Problem

There is a real $n$ such that $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?

$\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution 1

\[(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!\] \[n![n+1 + (n+2)(n+1)] = 440 \cdot n!\] \[n + 1 + n^2 + 3n + 2 = 440\] \[n^2 + 4n - 437 = 0\]

$\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow 19$. $1+9 = \boxed{C) 10}$

iron

Solution 2

Dividing both sides by $n!$ gives \[(n+1)+(n+2)(n+1)=440 \Rightarrow n^2+4n-437=0 \Rightarrow (n-19)(n+23)=0.\] Since $n$ is positive, $n=19$. The answer is $1+9=10\Rightarrow \boxed{C}.$

Solution 3

n=19 sum is 10 (SuperWill)


Solution 4

Divide both sides by $n!$:


$(n+1)+(n+1)(n+2)=440$

factor out $(n+1)$:

$(n+1)*(n+3)=440$


prime factorization of $440$ and a bit of experimentation gives us $n+1=20$ and $n+3=22$, so $\boxed{n=19}$.

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png