Difference between revisions of "2019 AMC 10B Problems/Problem 9"

m (Removed irrelevant attribution)
(Undo revision 103281 by Sevenoptimus (talk))
(Tag: Undo)
Line 18: Line 18:
  
 
Thus the range of the function <math>f</math> is <math>\boxed{\textbf{(A) } \{-1, 0\}}</math>.
 
Thus the range of the function <math>f</math> is <math>\boxed{\textbf{(A) } \{-1, 0\}}</math>.
 +
 +
~IronicNinja, edited by someone else
  
 
==Solution 2==
 
==Solution 2==

Revision as of 00:00, 18 February 2019

Problem

The function $f$ is defined by \[f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|\]for all real numbers $x$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to the real number $r$. What is the range of $f$?

$\textbf{(A) } \{-1, 0\} \qquad\textbf{(B) } \text{The set of nonpositive integers} \qquad\textbf{(C) } \{-1, 0, 1\} \qquad\textbf{(D) } \{0\} \qquad\textbf{(E) } \text{The set of nonnegative integers}$

Solution 1

There are four cases we need to consider here.

Case 1: $x$ is a positive integer. Without loss of generality, assume $x=1$. Then $f(1) = 1 - 1 = 0$.

Case 2: $x$ is a positive fraction. Without loss of generality, assume $x=\frac{1}{2}$. Then $f\left(\frac{1}{2}\right) = 0 - 0 = 0$.

Case 3: $x$ is a negative integer. Without loss of generality, assume $x=-1$. Then $f(-1) = 1 - 1 = 0$.

Case 4: $x$ is a negative fraction. Without loss of generality, assume $x=-\frac{1}{2}$. Then $f\left(-\frac{1}{2}\right) = 0 - 1 = -1$.

Thus the range of the function $f$ is $\boxed{\textbf{(A) } \{-1, 0\}}$.

~IronicNinja, edited by someone else

Solution 2

It is easily verified that when $x$ is an integer, $f(x)$ is zero. We therefore need only to consider the case when $x$ is not an integer.

When $x$ is positive, $\lfloor x\rfloor \geq 0$, so \[\begin{split}f(x)&=\lfloor|x|\rfloor-|\lfloor x\rfloor| \\ &=\lfloor x\rfloor-\lfloor x\rfloor \\ &=0\end{split}\]

When $x$ is negative, let $x=-a-b$ be composed of integer part $a$ and fractional part $b$ (both $\geq 0$): \[\begin{split}f(x)&=\lfloor|-a-b|\rfloor-|\lfloor -a-b\rfloor| \\ &=\lfloor a+b\rfloor-|-a-1| \\ &=a-(a+1)=-1\end{split}\]

Thus, the range of f is $\boxed{\textbf{(A) } \{-1, 0\}}$.

Note: One could solve the case of $x$ as a negative non-integer in this way: \[\begin{split}f(x)&=\lfloor|x|\rfloor-|\lfloor x\rfloor| \\ &=\lfloor -x\rfloor-|-\lfloor -x\rfloor-1| \\ &=\lfloor -x\rfloor-(\lfloor -x\rfloor+1) = -1\end{split}\]

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png