Difference between revisions of "2019 AMC 12A Problems/Problem 17"

m (Improved clarity and formatting)
Line 6: Line 6:
  
 
==Solution 1==
 
==Solution 1==
Applying Newton Sums we get the answer as 10
+
Applying Newton's Sums (see [https://artofproblemsolving.com/wiki/index.php/Newton%27s_Sums this link]), we get the answer as <math>10</math>.
  
 
==Solution 2==
 
==Solution 2==
Line 32: Line 32:
 
Therefore, <math>a = 5, b = -8</math>, and <math>c = 13</math> by matching coefficients.
 
Therefore, <math>a = 5, b = -8</math>, and <math>c = 13</math> by matching coefficients.
  
<math>5 - 8 + 13 = \boxed{\textbf{(D)}10}</math>
+
<math>5 - 8 + 13 = \boxed{\textbf{(D)}10}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 20:22, 10 February 2019

Problem

Let $s_k$ denote the sum of the $\textit{k}$th powers of the roots of the polynomial $x^3-5x^2+8x-13$. In particular, $s_0=3$, $s_1=5$, and $s_2=9$. Let $a$, $b$, and $c$ be real numbers such that $s_{k+1} = a \, s_k + b \, s_{k-1} + c \, s_{k-2}$ for $k = 2$, $3$, $....$ What is $a+b+c$?

$\textbf{(A)} \; -6 \qquad \textbf{(B)} \; 0 \qquad \textbf{(C)} \; 6 \qquad \textbf{(D)} \; 10 \qquad \textbf{(E)} \; 26$

Solution 1

Applying Newton's Sums (see this link), we get the answer as $10$.

Solution 2

Let $p, q$, and $r$ be the roots of the polynomial. Then,

$p^3 - 5p^2 + 8p - 13 = 0$

$q^3 - 5q^2 + 8q - 13 = 0$

$r^3 - 5r^2 + 8r - 13 = 0$

Adding these three equations, we get

$(p^3 + q^3 + r^3) - 5(p^2 + q^2 + r^2) + 8(p + q + r) - 39 = 0$

$s_3 - 5s_2 + 8s_1 = 39$

$39$ can be written as $13s_0$.

$s_3 = 5s_2 - 8s_1 + 13s_0$

We are given that $s_{k+1} = a \, s_k + b \, s_{k-1} + c \, s_{k-2}$ is satisfied for $k = 2$, $3$, $....$, meaning it must be satisfied when $k = 2$, giving us $s_3 = a \, s_2 + b \, s_1 + c \, s_0$.

Therefore, $a = 5, b = -8$, and $c = 13$ by matching coefficients.

$5 - 8 + 13 = \boxed{\textbf{(D)}10}$.

See Also

2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png