TEXTBOOKS FOR THE AMC 12
For over 25 years, students have used Art of Problem Solving textbooks as a central part of their AMC preparation.
LEARN MORE

Difference between revisions of "2019 AMC 12B Problems"

(Problem 4)
Line 2: Line 2:
  
 
==Problem 2==
 
==Problem 2==
 +
 +
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement.
 +
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
  
 
==Problem 3==
 
==Problem 3==
Line 8: Line 11:
  
 
==Problem 5==
 
==Problem 5==
 +
 +
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or <math>n</math> pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of <math>n</math>?
 +
 +
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28</math>
  
 
==Problem 6==
 
==Problem 6==
 +
 +
In a given plane, points <math>A</math> and <math>B</math> are <math>10</math> units apart. How many points <math>C</math> are there in the plane such that the perimeter of <math>\triangle ABC</math> is <math>50</math> units and the area of <math>\triangle ABC</math> is <math>100</math> square units?
 +
 +
<math>\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{infinitely many}</math>
  
 
==Problem 7==
 
==Problem 7==
 +
 +
What is the sum of all real numbers <math>x</math> for which the median of the numbers <math>4,6,8,17,</math> and <math>x</math> is equal to the mean of those five numbers?
 +
 +
<math>\textbf{(A) } -5 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } \frac{15}{4} \qquad\textbf{(E) } \frac{35}{4}</math>
  
 
==Problem 8==
 
==Problem 8==
Line 26: Line 41:
  
 
==Problem 14==
 
==Problem 14==
 +
 +
Let <math>S</math> be the set of all positive integer divisors of <math>100,000.</math> How many numbers are the product of two distinct elements of <math>S?</math>
 +
 +
<math>\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121</math>
  
 
==Problem 15==
 
==Problem 15==
  
 
==Problem 16==
 
==Problem 16==
 +
 +
There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a <math>\tfrac{1}{2}</math> chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?
 +
 +
<math>\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14</math>
  
 
==Problem 17==
 
==Problem 17==
 +
 +
How many nonzero complex numbers <math>z</math> have the property that <math>0, z,</math> and <math>z^3,</math> when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?
 +
 +
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{infinitely many}</math>
  
 
==Problem 18==
 
==Problem 18==
 +
 +
Square pyramid <math>ABCDE</math> has base <math>ABCD,</math> which measures <math>3</math> cm on a side, and altitude <math>\overline{AE}</math> perpendicular to the base<math>,</math> which measures <math>6</math> cm. Point <math>P</math> lies on <math>\overline{BE},</math> one third of the way from <math>B</math> to <math>E;</math> point <math>Q</math> lies on <math>\overline{DE},</math> one third of the way from <math>D</math> to <math>E;</math> and point <math>R</math> lies on <math>\overline{CE},</math> two thirds of the way from <math>C</math> to <math>E.</math> What is the area, in square centimeters, of <math>\triangle PQR?</math>
 +
 +
<math>\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2</math>
  
 
==Problem 19==
 
==Problem 19==
  
 
==Problem 20==
 
==Problem 20==
 +
 +
Points <math>A(6,13)</math> and <math>B(12,11)</math> lie on circle <math>\omega</math> in the plane. Suppose that the tangent lines to <math>\omega</math> at <math>A</math> and <math>B</math> intersect at a point on the <math>x</math>-axis. What is the area of <math>\omega</math>?
 +
 +
<math>\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) }
 +
\frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}</math>
  
 
==Problem 21==
 
==Problem 21==
 +
 +
How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is <math>ax^2+bx+c,a\neq 0,</math> and the roots are <math>r</math> and <math>s,</math> then the requirement is that <math>\{a,b,c\}=\{r,s\}</math>.)
 +
 +
<math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}</math>
  
 
==Problem 22==
 
==Problem 22==
 +
 +
Define a sequence recursively by <math>x_0=5</math> and
 +
<cmath>x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}</cmath>for all nonnegative integers <math>n.</math> Let <math>m</math> be the least positive integer such that
 +
<cmath>x_m\leq 4+\frac{1}{2^{20}}.</cmath>In which of the following intervals does <math>m</math> lie?
 +
 +
<math>\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]</math>
  
 
==Problem 23==
 
==Problem 23==
  
 
==Problem 24==
 
==Problem 24==
 +
 +
Let <math>\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.</math> Let <math>S</math> denote all points in the complex plane of the form <math>a+b\omega+c\omega^2,</math> where <math>0\leq a \leq 1,0\leq b\leq 1,</math> and <math>0\leq c\leq 1.</math> What is the area of <math>S</math>?
 +
<math>\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi</math>
  
 
==Problem 25==
 
==Problem 25==
 
(Sorry if it's too early...)
 

Revision as of 12:57, 14 February 2019

Problem 1

Problem 2

Consider the statement, "If $n$ is not prime, then $n-2$ is prime." Which of the following values of $n$ is a counterexample to this statement. $\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27$

Problem 3

Problem 4

Problem 5

Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or $n$ pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of $n$?

$\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28$

Problem 6

In a given plane, points $A$ and $B$ are $10$ units apart. How many points $C$ are there in the plane such that the perimeter of $\triangle ABC$ is $50$ units and the area of $\triangle ABC$ is $100$ square units?

$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{infinitely many}$

Problem 7

What is the sum of all real numbers $x$ for which the median of the numbers $4,6,8,17,$ and $x$ is equal to the mean of those five numbers?

$\textbf{(A) } -5 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } \frac{15}{4} \qquad\textbf{(E) } \frac{35}{4}$

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Problem 15

Problem 16

There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a $\tfrac{1}{2}$ chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?

$\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14$

Problem 17

How many nonzero complex numbers $z$ have the property that $0, z,$ and $z^3,$ when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{infinitely many}$

Problem 18

Square pyramid $ABCDE$ has base $ABCD,$ which measures $3$ cm on a side, and altitude $\overline{AE}$ perpendicular to the base$,$ which measures $6$ cm. Point $P$ lies on $\overline{BE},$ one third of the way from $B$ to $E;$ point $Q$ lies on $\overline{DE},$ one third of the way from $D$ to $E;$ and point $R$ lies on $\overline{CE},$ two thirds of the way from $C$ to $E.$ What is the area, in square centimeters, of $\triangle PQR?$

$\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

Problem 19

Problem 20

Points $A(6,13)$ and $B(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?

$\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) } \frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}$

Problem 21

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.)

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

Problem 22

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\]for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$

Problem 23

Problem 24

Let $\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.$ Let $S$ denote all points in the complex plane of the form $a+b\omega+c\omega^2,$ where $0\leq a \leq 1,0\leq b\leq 1,$ and $0\leq c\leq 1.$ What is the area of $S$? $\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi$

Problem 25