TEXTBOOKS FOR THE AMC 12
For over 25 years, students have used Art of Problem Solving textbooks as a central part of their AMC preparation.
LEARN MORE

Difference between revisions of "2019 AMC 12B Problems"

(Wrong problem for #19)
Line 20: Line 20:
  
 
<math>\textbf{(A) } </math> reflection in the <math>y</math>-axis
 
<math>\textbf{(A) } </math> reflection in the <math>y</math>-axis
 +
 
<math>\textbf{(B) } </math> counterclockwise rotation around the origin by <math>90^{\circ}</math>
 
<math>\textbf{(B) } </math> counterclockwise rotation around the origin by <math>90^{\circ}</math>
 +
 
<math>\textbf{(C) } </math> translation by 3 units to the right and 5 units down
 
<math>\textbf{(C) } </math> translation by 3 units to the right and 5 units down
 +
 
<math>\textbf{(D) } </math> reflection in the <math>x</math>-axis
 
<math>\textbf{(D) } </math> reflection in the <math>x</math>-axis
 +
 
<math>\textbf{(E) } </math> clockwise rotation about the origin by <math>180^{\circ}</math>
 
<math>\textbf{(E) } </math> clockwise rotation about the origin by <math>180^{\circ}</math>
  

Revision as of 15:25, 14 February 2019

Problem 1

Alicia had two containers. The first was $\tfrac{5}{6}$ full of water and the second was empty. She poured all the water from the first container into the second container, at which point the second container was $\tfrac{3}{4}$ full of water. What is the ratio of the volume of the first container to the volume of the second container?

$\textbf{(A) } \frac{5}{8} \qquad \textbf{(B) } \frac{4}{5} \qquad \textbf{(C) } \frac{7}{8} \qquad \textbf{(D) } \frac{9}{10} \qquad \textbf{(E) } \frac{11}{12}$

Solution

Problem 2

Consider the statement, "If $n$ is not prime, then $n-2$ is prime." Which of the following values of $n$ is a counterexample to this statement.

$\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27$

Solution

Problem 3

Which one of the following rigid transformations (isometries) maps the line segment $\overline{AB}$ onto the line segment $\overline{A'B'}$ so that the image of $A(-2,1)$ is $A'(2,-1)$ and the image of $B(-1,4)$ is $B'(1,-4)?$

$\textbf{(A) }$ reflection in the $y$-axis

$\textbf{(B) }$ counterclockwise rotation around the origin by $90^{\circ}$

$\textbf{(C) }$ translation by 3 units to the right and 5 units down

$\textbf{(D) }$ reflection in the $x$-axis

$\textbf{(E) }$ clockwise rotation about the origin by $180^{\circ}$

Solution

Problem 4

A positive integer $n$ satisfies the equation $(n+1)!+(n+2)!=440\cdot n!$. What is the sum of the digits of $n$?

$\textbf{(A) } 2 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 10\qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$

Solution

Problem 5

Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or $n$ pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of $n$?

$\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28$

Solution

Problem 6

In a given plane, points $A$ and $B$ are $10$ units apart. How many points $C$ are there in the plane such that the perimeter of $\triangle ABC$ is $50$ units and the area of $\triangle ABC$ is $100$ square units?

$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 7

What is the sum of all real numbers $x$ for which the median of the numbers $4,6,8,17,$ and $x$ is equal to the mean of those five numbers?

$\textbf{(A) } -5 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } \frac{15}{4} \qquad\textbf{(E) } \frac{35}{4}$

Solution

Problem 8

Let $f(x) = x^{2}(1-x)^{2}$. What is the value of the sum

$f(\frac{1}{2019})-f(\frac{2}{2019})+f(\frac{3}{2019})-f(\frac{4}{2019})+\cdots$

$+ f(\frac{2017}{2019}) - f(\frac{2018}{2019})$?

$\textbf{(A) }0\qquad\textbf{(B) }\frac{1}{2019^{4}}\qquad\textbf{(C) }\frac{2018^{2}}{2019^{4}}\qquad\textbf{(D) }\frac{2020^{2}}{2019^{4}}\qquad\textbf{(E) }1$

Solution

Problem 9

For how many integral values of $x$ can a triangle of positive area be formed having side lengths $\log_{2} x, \log_{4} x, 3$?

$\textbf{(A) } 57\qquad \textbf{(B) } 59\qquad \textbf{(C) } 61\qquad \textbf{(D) } 62\qquad \textbf{(E) } 63$

Solution

Problem 10

Solution

Problem 11

How many unordered pairs of edges of a given cube determine a plane?

$\textbf{(A) } 12 \qquad \textbf{(B) } 28 \qquad \textbf{(C) } 36\qquad \textbf{(D) } 42 \qquad \textbf{(E) } 66$

Solution

Problem 12

Solution

Problem 13

A red ball and a green ball are randomly and independently tossed into bins numbered with positive integers so that for each ball, the probability that it is tossed into bin $k$ is $2^{-k}$ for $k=1,2,3,\ldots.$ What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?

$\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}$

Solution

Problem 14

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Solution

Problem 15

As shown in the figure, line segment $\overline{AD}$ is trisected by points $B$ and $C$ so that $AB=BC=CD=2.$ Three semicircles of radius $1,$ $\overarc{AEB},\overarc{BFC},$ and $\overarc{CGD},$ have their diameters on $\overline{AD},$ and are tangent to line $EG$ at $E,F,$ and $G,$ respectively. A circle of radius $2$ has its center on $F.$ The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form \[\frac{a}{b}\cdot\pi-\sqrt{c}+d,\]where $a,b,c,$ and $d$ are positive integers and $a$ and $b$ are relatively prime. What is $a+b+c+d$?

[asy] size(6cm); filldraw(circle((0,0),2), gray(0.7)); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("$A$",(-3,-1),S); dot((-2,0)); label("$E$",(-2,0),NW); dot((-1,-1)); label("$B$",(-1,-1),S); dot((0,0)); label("$F$",(0,0),N); dot((1,-1)); label("$C$",(1,-1), S); dot((2,0)); label("$G$", (2,0),NE); dot((3,-1)); label("$D$", (3,-1), S); [/asy] $\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17$

Solution

Problem 16

There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a $\tfrac{1}{2}$ chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?

$\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14$

Solution

Problem 17

How many nonzero complex numbers $z$ have the property that $0, z,$ and $z^3,$ when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 18

Square pyramid $ABCDE$ has base $ABCD,$ which measures $3$ cm on a side, and altitude $\overline{AE}$ perpendicular to the base$,$ which measures $6$ cm. Point $P$ lies on $\overline{BE},$ one third of the way from $B$ to $E;$ point $Q$ lies on $\overline{DE},$ one third of the way from $D$ to $E;$ and point $R$ lies on $\overline{CE},$ two thirds of the way from $C$ to $E.$ What is the area, in square centimeters, of $\triangle PQR?$

$\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

Solution

Problem 19

Solution

Problem 20

Points $A(6,13)$ and $B(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?

$\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) } \frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}$

Solution

Problem 21

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.)

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

Solution

Problem 22

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\]for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$

Solution

Problem 23

How many sequences of $0$s and $1$s of length $19$ are there that begin with a $0$, end with a $0$, contain no two consecutive $0$s, and contain no three consecutive $1$s?

$\textbf{(A) }55\qquad\textbf{(B) }60\qquad\textbf{(C) }65\qquad\textbf{(D) }70\qquad\textbf{(E) }75$

Solution

Problem 24

Let $\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.$ Let $S$ denote all points in the complex plane of the form $a+b\omega+c\omega^2,$ where $0\leq a \leq 1,0\leq b\leq 1,$ and $0\leq c\leq 1.$ What is the area of $S$?

$\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi$

Solution

Problem 25

Let $ABCD$ be a convex quadrilateral with $BC=2$ and $CD=6.$ Suppose that the centroids of $\triangle ABC,\triangle BCD,$ and $\triangle ACD$ form the vertices of an equilateral triangle. What is the maximum possible value of $ABCD$?

$\textbf{(A) } 27 \qquad\textbf{(B) } 16\sqrt3 \qquad\textbf{(C) } 12+10\sqrt3 \qquad\textbf{(D) } 9+12\sqrt3 \qquad\textbf{(E) } 30$

Solution