2019 AMC 12B Problems/Problem 18

Revision as of 18:47, 14 February 2019 by P groudon (talk | contribs)

Problem

Square pyramid $ABCDE$ has base $ABCD$, which measures $3$ cm on a side, and altitude $AE$ perpendicular to the base, which measures $6$ cm. Point $P$ lies on $BE$, one third of the way from $B$ to $E$; point $Q$ lies on $DE$, one third of the way from $D$ to $E$; and point $R$ lies on $CE$, two thirds of the way from $C$ to $E$. What is the area, in square centimeters, of $\triangle{PQR}$?

$\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

Solution (Coordinate Bash)

Let $A(0, 0, 0), B(3, 0, 0), C(0, 3, 0), D(3, 3, 0),$ and $E(0, 0, 6)$. We can figure out that $P(2, 0, 2), Q(0, 2, 2),$ and $R(1, 1, 4)$.

Using the distance formula, $PQ = 2\sqrt{2}$, $PR = \sqrt{6}$, and $QR = \sqrt{6}$. Using Heron's formula or dropping an altitude from P to find the height, we can compute that the area of $\triangle{PQR}$ is $\boxed{\textbf{(C) }2\sqrt{2}}$.

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions