Difference between revisions of "2019 AMC 8 Problems/Problem 25"

m (Solution (Answer Choices))
(8 intermediate revisions by 4 users not shown)
Line 14: Line 14:
 
By Stars and Bars, our answer is just <math>\binom{18 + 3 - 1}{3 - 1} = \binom{20}{2} = \boxed{\textbf{(C)}\ 190}</math>.
 
By Stars and Bars, our answer is just <math>\binom{18 + 3 - 1}{3 - 1} = \binom{20}{2} = \boxed{\textbf{(C)}\ 190}</math>.
  
==Solution 2==
+
==Solution 2 (Answer Choices)==
First assume that Alice has <math>2</math> apples. There are <math>19</math> ways to split the rest of the apples with Becky and Chris. If Alice has <math>3</math> apples, there are <math>18</math> ways to split the rest of the apples with Becky and Chris. If Alice has <math>4</math> apples, there are <math>17</math> ways to split the rest. So, the total number of ways to split <math>24</math> apples between the three friends is equal to <math>19 + 18 + 17...…… + 1 = 20\times \frac{19}{2}=\boxed{\textbf{(C)}\ 190}</math>.
+
Consider an unordered triple <math> (a,b,c) </math> where <math> a+b+c=24 </math> and <math> a,b,c </math> are not necessarily distinct. Then, we will either have <math> 1 </math>, <math> 3 </math>, or <math> 6 </math> distinguishable ways to assign <math> a </math>, <math> b </math>, and <math> c </math> to Alice, Becky, and Chris. Thus, our answer will be <math> x+3y+6z </math> for some nonnegative integers <math> x,y,z </math>. Notice that we only have <math> 1 </math> way to assign the numbers <math> a,b,c </math> to Alice, Becky, and Chris when <math> a=b=c </math>. As this only happens <math> 1 </math> way (<math>a=b=c=8</math>), our answer is <math> 1+3y+6z </math> for some <math> y,z </math>. Finally, notice that this implies the answer is <math> 1 </math> mod <math> 3 </math>. The only answer choice that satisfies this is <math> \boxed{\textbf{(C) }190} </math>.
 +
 
 +
-BorealBear
 +
 
 +
==Solution 3==
 +
Since each person needs to have at least two apples, we can simply give each person two, leaving <math> 24 - 2\times3=18 </math> apples. For the remaining apples, if Alice is going to have <math> a </math> apples, Becky is going to have <math> b </math> apples, and Chris is going to have <math> c </math> apples, we have indeterminate equation <math> a+b+c=18 </math>. Currently, we can see that <math> 0 \leq a\leq 18 </math> where <math> a </math> is an integer, and when <math> a </math> equals any number in the range, there will be <math> 18-a+1=19-a </math> sets of values for <math> b </math> and <math> c </math>. Thus, there are <math> 19 + 18 + 17 + \cdots + 1 = \boxed{\textbf{(C) }190} </math> possible sets of values in total.
  
 +
~[[User:Bloggish|Bloggish]]
  
==Solution (Answer Choices)==
+
== Video Solution by OmegaLearn ==
Consider an unordered triple <math> (a,b,c) </math> where <math> a+b+c=24 </math> and <math> a,b,c </math> are not necessarily distinct. Then, we will either have <math> 1 </math>, <math> 3 </math>, or <math> 6 </math> distinguishable ways to assign <math> a </math>, <math> b </math>, and <math> c </math> to Alice, Becky, and Chris. Thus, our answer will be <math> x+3y+6z </math> for some nonnegative integers <math> x,y,z </math>. Notice that we only have <math> 1 </math> way to assign the numbers <math> a,b,c </math> to Alice, Becky, and Chris when <math> a=b=c </math>. As this only happens <math> 1 </math> way (<math>a=b=c=8</math>), our answer is <math> 1+3y+6z </math> for some <math> y,z </math>. Finally, notice that this implies the answer is <math> 1 </math> mod <math> 3 </math>. The only answer choice that satisfies this is <math> \boxed{\textbf{(C) }190} </math>.
+
https://youtu.be/5UojVH4Cqqs?t=5131
  
-BorealBear
+
~ pi_is_3.14
  
 
==Video Solutions==
 
==Video Solutions==
Line 37: Line 43:
  
 
~ MathEx
 
~ MathEx
 
https://youtu.be/5UojVH4Cqqs?t=5131
 
 
~ pi_is_3.14
 
  
 
https://youtu.be/8kzjB60pBrA
 
https://youtu.be/8kzjB60pBrA
Line 47: Line 49:
  
 
==See Also==
 
==See Also==
{{AMC8 box|year=2019|num-b=24|after=Last Problem}}
 
  
 
{{MAA Notice}}
 
{{MAA Notice}}
  
 
[[Category:Introductory Combinatorics Problems]]
 
[[Category:Introductory Combinatorics Problems]]

Revision as of 09:52, 27 January 2023

Problem 25

Alice has $24$ apples. In how many ways can she share them with Becky and Chris so that each of the three people has at least two apples? $\textbf{(A) }105\qquad\textbf{(B) }114\qquad\textbf{(C) }190\qquad\textbf{(D) }210\qquad\textbf{(E) }380$

Solution 1

We use stars and bars. Let Alice get $k$ apples, let Becky get $r$ apples, let Chris get $y$ apples. \[\implies k + r + y = 24\]We can manipulate this into an equation which can be solved using stars and bars.

All of them get at least $2$ apples, so we can subtract $2$ from $k$, $2$ from $r$, and $2$ from $y$. \[\implies (k - 2) + (r - 2) + (y - 2) = 18\]Let $k' = k - 2$, let $r' = r - 2$, let $y' = y - 2$. \[\implies k' + r' + y' = 18\]We can allow either of them to equal to $0$; hence, this can be solved by stars and bars.


By Stars and Bars, our answer is just $\binom{18 + 3 - 1}{3 - 1} = \binom{20}{2} = \boxed{\textbf{(C)}\ 190}$.

Solution 2 (Answer Choices)

Consider an unordered triple $(a,b,c)$ where $a+b+c=24$ and $a,b,c$ are not necessarily distinct. Then, we will either have $1$, $3$, or $6$ distinguishable ways to assign $a$, $b$, and $c$ to Alice, Becky, and Chris. Thus, our answer will be $x+3y+6z$ for some nonnegative integers $x,y,z$. Notice that we only have $1$ way to assign the numbers $a,b,c$ to Alice, Becky, and Chris when $a=b=c$. As this only happens $1$ way ($a=b=c=8$), our answer is $1+3y+6z$ for some $y,z$. Finally, notice that this implies the answer is $1$ mod $3$. The only answer choice that satisfies this is $\boxed{\textbf{(C) }190}$.

-BorealBear

Solution 3

Since each person needs to have at least two apples, we can simply give each person two, leaving $24 - 2\times3=18$ apples. For the remaining apples, if Alice is going to have $a$ apples, Becky is going to have $b$ apples, and Chris is going to have $c$ apples, we have indeterminate equation $a+b+c=18$. Currently, we can see that $0 \leq a\leq 18$ where $a$ is an integer, and when $a$ equals any number in the range, there will be $18-a+1=19-a$ sets of values for $b$ and $c$. Thus, there are $19 + 18 + 17 + \cdots + 1 = \boxed{\textbf{(C) }190}$ possible sets of values in total.

~Bloggish

Video Solution by OmegaLearn

https://youtu.be/5UojVH4Cqqs?t=5131

~ pi_is_3.14

Video Solutions

https://www.youtube.com/watch?v=EJzSOPXULBc

- Happytwin

https://www.youtube.com/watch?v=wJ7uvypbB28

https://www.youtube.com/watch?v=2dBUklyUaNI


https://www.youtube.com/watch?v=3qp0wTq-LI0&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=7

~ MathEx

https://youtu.be/8kzjB60pBrA

~savannahsolver

See Also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png