# 2019 AMC 8 Problems/Problem 7

## Problem 7

Shauna takes five tests, each worth a maximum of $100$ points. Her scores on the first three tests are $76$, $94$, and $87$. In order to average $81$ for all five tests, what is the lowest score she could earn on one of the other two tests? $\textbf{(A) }48\qquad\textbf{(B) }52\qquad\textbf{(C) }66\qquad\textbf{(D) }70\qquad\textbf{(E) }74$

## Solution 1

We should notice that we can turn the information we are given into a linear equation and just solve for our set variables. I'll use the variables $x$ and $y$ for the scores on the last two tests. $$\frac{76+94+87+x+y}{5} = 81,$$ $$\frac{257+x+y}{5} = 81.$$ We can now cross multiply to get rid of the denominator. $$257+x+y = 405,$$ $$x+y = 148.$$ Now that we have this equation, we will assign $y$ as the lowest score of the two other tests, and so: $$x = 100,$$ $$y=48.$$ Now we know that the lowest score on the two other tests is $\boxed{48}$.

~ aopsav

## Solution 2

Right now, she scored $76, 94,$ and $87$ points, for a total of $257$ points. She wants her average to be $81$ for her $5$ tests, so she needs to score $405$ points in total. This means she needs to score a total of $405-257= 148$ points in her next $2$ tests. Since the maximum score she can get on one of her $2$ tests is $100$, the least possible score she can get is $\boxed{\textbf{(A)}\ 48}$.

Note: You can verify that $\boxed{48}$ is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer.

## Solution 3

We can compare each of the scores with the average of $81$: $76$ $\rightarrow$ $-5$, $94$ $\rightarrow$ $+13$, $87$ $\rightarrow$ $+6$, $100$ $\rightarrow$ $+19$;

So the last one has to be $-33$ (since all the differences have to sum to $0$), which corresponds to $81-33 = \boxed{48}$.

## See also

 2019 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 6 Followed byProblem 8 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS