Difference between revisions of "2020 AIME II Problems/Problem 11"

(Solution 3)
(Solution 3)
Line 1: Line 1:
==Problem==
 
 
Let <math>P(x) = x^2 - 3x - 7</math>, and let <math>Q(x)</math> and <math>R(x)</math> be two quadratic polynomials also with the coefficient of <math>x^2</math> equal to <math>1</math>. David computes each of the three sums <math>P + Q</math>, <math>P + R</math>, and <math>Q + R</math> and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If <math>Q(0) = 2</math>, then <math>R(0) = \frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
 
 
==Solution 1==
 
Let <math>Q(x) = x^2 + ax + 2</math> and <math>R(x) = x^2 + bx + c</math>.  We can write the following:
 
<cmath>P + Q = 2x^2 + (a - 3)x - 5</cmath>
 
<cmath>P + R = 2x^2 + (b - 3)x + (c - 7)</cmath>
 
<cmath>Q + R = 2x^2 + (a + b)x + (c + 2)</cmath>
 
Let the common root of <math>P+Q,P+R</math> be <math>r</math>; <math>P+R,Q+R</math> be <math>s</math>; and <math>P+Q,Q+R</math> be <math>t</math>.  We then have that the roots of <math>P+Q</math> are <math>r,t</math>, the roots of <math>P + R</math> are <math>r, s</math>, and the roots of <math>Q + R</math> are <math>s,t</math>.
 
 
By Vieta's, we have:
 
<cmath> r + t = \dfrac{3 - a}{2}\tag{1}</cmath>
 
<cmath>r + s = \dfrac{3 - b}{2}\tag{2}</cmath>
 
<cmath>s + t = \dfrac{-a - b}{2}\tag{3}</cmath>
 
<cmath>rt = \dfrac{-5}{2}\tag{4}</cmath>
 
<cmath>rs = \dfrac{c - 7}{2}\tag{5}</cmath>
 
<cmath>st = \dfrac{c + 2}{2}\tag{6}</cmath>
 
 
Subtracting <math>(3)</math> from <math>(1)</math>, we get <math>r - s = \dfrac{3 + b}{2}</math>.  Adding this to <math>(2)</math>, we get <math>2r = 3 \implies r = \dfrac{3}{2}</math>.  This gives us that <math>t = \dfrac{-5}{3}</math> from <math>(4)</math>.  Substituting these values into <math>(5)</math> and <math>(6)</math>, we get <math>s = \dfrac{c-7}{3}</math> and <math>s = \dfrac{-3c - 6}{10}</math>.  Equating these values, we get <math>\dfrac{c-7}{3} = \dfrac{-3c-6}{10} \implies c = \dfrac{52}{19} = R(0)</math>.  Thus, our answer is <math>52 + 19 = \boxed{071}</math>. ~ TopNotchMath
 
 
==Solution 2==
 
Let <math>P+Q, Q+R</math> have shared root <math>q</math>, <math>Q+R, R+P</math> have shared root <math>r</math>, and the last pair having shared root <math>p</math>. We will now set <math>Q(x) = x^2+ax+2</math>, and <math>R(x) = x^2+bx+c</math>. We wish to find <math>c</math>, and now we compute <math>P+Q,Q+R,R+P</math>.
 
<cmath>P+Q = 2x^2+(a-3)x-5 = 2(x-p)(x-q)</cmath>
 
<cmath>Q+R = 2x^2+(a+b)x+(2+c) = 2(x-q)(x-r)</cmath>
 
<cmath>R+P = 2x^2+(b-3)x+(c-7) = 2(x-r)(x-p)</cmath>
 
From here, we equate coefficients. This means <math>p+q = \frac{3-a}{2}, p+r = \frac{3-b}{2}, q+r = \frac{-a-b}{2} \implies p = \frac{3}{2}</math>. Now, <math>pq = \frac{-5}{2} \implies q = -\frac{5}{3}</math>. Finally, we know that <math>pr = \frac{c-7}{2}, qr = \frac{c+2}{2} \implies c = \frac{52}{19} = R(0) \implies \boxed{071}.</math>
 
 
 
==Solution 3==
 
==Solution 3==
  
Line 58: Line 30:
  
 
~quacker88
 
~quacker88
 
==Video Solution==
 
https://youtu.be/BQlab3vjjxw ~ CNCM
 
==See Also==
 
{{AIME box|year=2020|n=II|num-b=10|num-a=12}}
 
{{MAA Notice}}
 

Revision as of 11:30, 9 June 2020

Solution 3

We know that $P(x)=x^2-3x-7$.

Since $Q(0)=2$, the constant term in $Q(x)$ is $2$. Let $Q(x)=x^2+ax+2$.

Finally, let $R(x)=x^2+bx+c$.

$P(x)+Q(x)=2x^2+(a-3)x-5$. Let its roots be $p$ and $q$.

$P(x)+R(x)=2x^2+(b-3)x+(c-7)$ Let its roots be $p$ and $r$.

$Q(x)+R(x)=2x^2+(a+b)x+(c+2)$. Let its roots be $q$ and $r$.

By vietas, $p+q=\frac{3-a}{2}, p+r=\frac{3-b}{2}, q+r=\frac{-(a+b)}{2}$

We could work out the system of equations, but it's pretty easy to see that $p=\frac32, q=-\frac{a}{2}, r=-\frac{b}{2}$.

$\text{Again, by vietas, }pq=-\frac52\text{, } pr=\frac{c-7}{2}\text{, } qr=\frac{c+2}{2}$ $\text{Multiplying everything together a}\text{nd then taking the sqrt of both sides,}$ \[(pqr)^2=\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)\] \[pqr=\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}\] $\text{Now, we divide this }\text{equation by }qr=\frac{c+2}{2}$ \[\frac{pqr}{qr}=\frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}}{\frac{c+2}{2}}\] \[p = \frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}}{\sqrt{\frac{c+2}{2}}}\] $\text{Recall th}\text{at }p=\frac32 \text{ and square both sides}$ \[\frac94=\frac{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}{\frac{c+2}{2}}\] $\text{Solving gives } c=\frac{52}{19}, \text{ so our answer is }\boxed{071}$ \end{align*}

~quacker88