Difference between revisions of "2020 AIME II Problems/Problem 4"

m (Solution)
(Solution)
Line 5: Line 5:
 
After sketching, it is clear a <math>90^{\circ}</math> rotation is done about <math>(x,y)</math>. Looking between <math>A</math> and <math>A'</math>, <math>x+y=18</math> and <math>x-y=24</math>. Solving gives <math>(x,y)\implies(21,-3)</math>. Thus <math>90+21-3=\boxed{108}</math>.
 
After sketching, it is clear a <math>90^{\circ}</math> rotation is done about <math>(x,y)</math>. Looking between <math>A</math> and <math>A'</math>, <math>x+y=18</math> and <math>x-y=24</math>. Solving gives <math>(x,y)\implies(21,-3)</math>. Thus <math>90+21-3=\boxed{108}</math>.
 
~mn28407
 
~mn28407
 +
 +
==Solution 2 (Official MAA)==
 +
Because the rotation sends the vertical segment <math>\overline{AB}</math> to the horizontal segment <math>\overline{A'B'}</math>, the angle of rotation is <math>90^\circ</math> degrees clockwise. For any point <math>(x,y)</math> not at the origin, the line segments from <math>(0,0)</math> to <math>(x,y)</math> and from <math>(x,y)</math> to <math>(x-y,y+x)</math> are perpendicular and are the same length. Thus a <math>90^\circ</math> clockwise rotation around the point <math>(x,y)</math> sends the point <math>A(0,0)</math> to the point <math>(x-y,y+x) = A'(24,18)</math>. This has the solution <math>(x,y) = (21,-3)</math>. The requested sum is <math>90+21-3=108</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 12:54, 8 June 2020

Problem

Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$, $B(0,12)$, $C(16,0)$, $A'(24,18)$, $B'(36,18)$, $C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$ where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.

Solution

After sketching, it is clear a $90^{\circ}$ rotation is done about $(x,y)$. Looking between $A$ and $A'$, $x+y=18$ and $x-y=24$. Solving gives $(x,y)\implies(21,-3)$. Thus $90+21-3=\boxed{108}$. ~mn28407

Solution 2 (Official MAA)

Because the rotation sends the vertical segment $\overline{AB}$ to the horizontal segment $\overline{A'B'}$, the angle of rotation is $90^\circ$ degrees clockwise. For any point $(x,y)$ not at the origin, the line segments from $(0,0)$ to $(x,y)$ and from $(x,y)$ to $(x-y,y+x)$ are perpendicular and are the same length. Thus a $90^\circ$ clockwise rotation around the point $(x,y)$ sends the point $A(0,0)$ to the point $(x-y,y+x) = A'(24,18)$. This has the solution $(x,y) = (21,-3)$. The requested sum is $90+21-3=108$.

Video Solution

https://youtu.be/atqPgGG0Ekk

~IceMatrix

See Also=

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png