Difference between revisions of "2020 AIME I Problems/Problem 11"
Lawliet163 (talk | contribs) m (→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
For integers <math>a,b,c</math> and <math>d,</math> let <math>f(x)=x^2+ax+b</math> and <math>g(x)=x^2+cx+d.</math> Find the number of ordered triples <math>(a,b,c)</math> of integers with absolute values not exceeding <math>10</math> for which there is an integer <math>d</math> such that <math>g(f(2))=g(f(4))=0.</math> | For integers <math>a,b,c</math> and <math>d,</math> let <math>f(x)=x^2+ax+b</math> and <math>g(x)=x^2+cx+d.</math> Find the number of ordered triples <math>(a,b,c)</math> of integers with absolute values not exceeding <math>10</math> for which there is an integer <math>d</math> such that <math>g(f(2))=g(f(4))=0.</math> | ||
− | == Solution == | + | == Solution 1 (Strategic Casework)== |
Either <math>f(2)=f(4)</math> or not. If it is, note that Vieta's forces <math>a = -6</math>. Then, <math>b</math> can be anything. However, <math>c</math> can also be anything, as we can set the root of <math>g</math> (not equal to <math>f(2) = f(4)</math>) to any integer, producing a possible integer value of <math>d</math>. Therefore there are <math>21^2 = 441</math> in this case. If it isn't, then <math>f(2),f(4)</math> are the roots of <math>g</math>. This means by Vieta's, that: | Either <math>f(2)=f(4)</math> or not. If it is, note that Vieta's forces <math>a = -6</math>. Then, <math>b</math> can be anything. However, <math>c</math> can also be anything, as we can set the root of <math>g</math> (not equal to <math>f(2) = f(4)</math>) to any integer, producing a possible integer value of <math>d</math>. Therefore there are <math>21^2 = 441</math> in this case. If it isn't, then <math>f(2),f(4)</math> are the roots of <math>g</math>. This means by Vieta's, that: | ||
Line 10: | Line 10: | ||
<cmath>3a + b \in [-15,-5].</cmath> | <cmath>3a + b \in [-15,-5].</cmath> | ||
− | Solving these inequalities while considering that <math>a \neq -6</math> to prevent <math>f(2) = f(4)</math>, we obtain <math>69</math> possible tuples and adding gives <math>441+69=\boxed{510}</math>. ~awang11 | + | Solving these inequalities while considering that <math>a \neq -6</math> to prevent <math>f(2) = f(4)</math>, we obtain <math>69</math> possible tuples and adding gives <math>441+69=\boxed{510}</math>. |
+ | ~awang11 | ||
== Solution 2 (Bash) == | == Solution 2 (Bash) == |
Revision as of 11:42, 28 March 2020
Problem
For integers and let and Find the number of ordered triples of integers with absolute values not exceeding for which there is an integer such that
Solution 1 (Strategic Casework)
Either or not. If it is, note that Vieta's forces . Then, can be anything. However, can also be anything, as we can set the root of (not equal to ) to any integer, producing a possible integer value of . Therefore there are in this case. If it isn't, then are the roots of . This means by Vieta's, that:
Solving these inequalities while considering that to prevent , we obtain possible tuples and adding gives . ~awang11
Solution 2 (Bash)
Define . Since , we know . Plugging in into , we get . Setting , . Simplifying and cancelling terms,
Therefore, either or . The first case is easy: and there are tuples in that case. In the second case, we simply perform casework on even values of , to get tuples, subtracting the tuples in both cases we get .
-EZmath2006
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.