Difference between revisions of "2020 AIME I Problems/Problem 9"

(Solution)
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
 +
 +
First, prime factorize <math>20^9</math> as <math>2^{18} \cdot 5^9</math>. Denote <math>a_1</math> as <math>2^{b_1} \cdot 5^{c_1}</math>, <math>a_2</math> as <math>2^{b_2} \cdot 5^{c_2}</math>, and <math>a_3</math> as <math>2^{b_3} \cdot 5^{c_3}</math>.
 +
 +
In order for <math>a_1</math> to divide <math>a_2</math>, and for <math>a_2</math> to divide <math>a_3</math>, <math>b_1<=b_2<=b_3</math>, and <math>c_1<=c_2<=c_3</math>. We will consider each case separately. Note that the total amount of possibilities is <math>190^3</math>, as there are <math>(18+1)(9+1)=190</math> choices for each factor.
 +
 +
We notice that if we add <math>1</math> to <math>b_2</math> and <math>2</math> to <math>b_3</math>, then we can reach the stronger inequality <math>b_1<b_2<b_3</math>. Therefore, if we pick <math>3</math> integers from <math>0</math> to <math>20</math>, they will correspond to a unique solution, forming a 1-1 correspondence. The amount of solutions to this inequality is <math>\dbinom{21}{3}</math>.
 +
 +
The case for <math>c_1</math>,<math>c_2</math>, and <math>c_3</math> proceeds similarly for a result of <math>\dbinom{12}{3}</math>. Therefore, the probability of choosing three such factors is <cmath>\frac{\dbinom{21}{3} \cdot \dbinom{12}{3}}{190^3}.</cmath> Simplification gives <math>\frac{77}{1805}</math>, and therefore the answer is <math>\boxed{77}</math>.
 +
 +
-molocyxu
  
 
==See Also==
 
==See Also==

Revision as of 17:13, 12 March 2020

Note: Please do not post problems here until after the AIME.

Problem

Solution

First, prime factorize $20^9$ as $2^{18} \cdot 5^9$. Denote $a_1$ as $2^{b_1} \cdot 5^{c_1}$, $a_2$ as $2^{b_2} \cdot 5^{c_2}$, and $a_3$ as $2^{b_3} \cdot 5^{c_3}$.

In order for $a_1$ to divide $a_2$, and for $a_2$ to divide $a_3$, $b_1<=b_2<=b_3$, and $c_1<=c_2<=c_3$. We will consider each case separately. Note that the total amount of possibilities is $190^3$, as there are $(18+1)(9+1)=190$ choices for each factor.

We notice that if we add $1$ to $b_2$ and $2$ to $b_3$, then we can reach the stronger inequality $b_1<b_2<b_3$. Therefore, if we pick $3$ integers from $0$ to $20$, they will correspond to a unique solution, forming a 1-1 correspondence. The amount of solutions to this inequality is $\dbinom{21}{3}$.

The case for $c_1$,$c_2$, and $c_3$ proceeds similarly for a result of $\dbinom{12}{3}$. Therefore, the probability of choosing three such factors is \[\frac{\dbinom{21}{3} \cdot \dbinom{12}{3}}{190^3}.\] Simplification gives $\frac{77}{1805}$, and therefore the answer is $\boxed{77}$.

-molocyxu

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png