Difference between revisions of "2020 AMC 10A Problems/Problem 1"

(Solution)
Line 6: Line 6:
 
== Solution ==  
 
== Solution ==  
  
Adding <math>\frac{3}{4}</math> to both sides, <math>x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=</math>\boxed{\text{(E) }\frac{5}{5}}$.
+
Adding <math>\frac{3}{4}</math> to both sides, <math>x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\text{(E) }\frac{5}{5}}</math>.
  
 
== See Also ==
 
== See Also ==

Revision as of 20:54, 31 January 2020

Problem 1

What value of $x$ satisfies \[x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?\]

$\textbf{(A)}\ -\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}$

Solution

Adding $\frac{3}{4}$ to both sides, $x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\text{(E) }\frac{5}{5}}$.

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS