Difference between revisions of "2020 AMC 10A Problems/Problem 13"

(Solution 5(Last Resort))
(Solution 5(Last Resort))
Line 54: Line 54:
 
==Solution 5(Last Resort)==
 
==Solution 5(Last Resort)==
 
Please note that this is only a simple solution that is not guaranteed to work for similar problems. This is also my first time writing a solution.
 
Please note that this is only a simple solution that is not guaranteed to work for similar problems. This is also my first time writing a solution.
 +
 
In a 4 x 4 square, there are a total of 5 + 3 + 5 + 3 = 16 points on the edges.  
 
In a 4 x 4 square, there are a total of 5 + 3 + 5 + 3 = 16 points on the edges.  
 
Of these points, 10 of them are on the vertical sides.
 
Of these points, 10 of them are on the vertical sides.

Revision as of 16:43, 6 June 2020

The following problem is from both the 2020 AMC 12A #11 and 2020 AMC 10A #13, so both problems redirect to this page.

Problem 13

A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square$?$

$\textbf{(A)}\ \frac12\qquad\textbf{(B)}\ \frac 58\qquad\textbf{(C)}\ \frac 23\qquad\textbf{(D)}\ \frac34\qquad\textbf{(E)}\ \frac 78$

Solution

Drawing out the square, it's easy to see that if the frog goes to the left, it will immediately hit a vertical end of the square. Therefore, the probability of this happening is $\frac{1}{4} * 1 = \frac{1}{4}$. If the frog goes to the right, it will be in the center of the square at $(2,2)$, and by symmetry (since the frog is equidistant from all sides of the square), the chance it will hit a vertical side of a square is $\frac{1}{2}$. The probability of this happening is $\frac{1}{4} * \frac{1}{2} = \frac{1}{8}$.


If the frog goes either up or down, it will hit a line of symmetry along the corner it is closest to and furthest to, and again, is equidistant relating to the two closer sides and also equidistant relating the two further sides. The probability for it to hit a vertical wall is $\frac{1}{2}$. Because there's a $\frac{1}{2}$ chance of the frog going up and down, the total probability for this case is $\frac{1}{2} * \frac{1}{2} = \frac{1}{4}$ and summing up all the cases, $\frac{1}{4} + \frac{1}{8} + \frac{1}{4} = \frac{5}{8}       \implies \boxed{\textbf{(B) } \frac{5}{8}.}$

Solution 2

Let's say we have our four by four grid and we work this out by casework. A is where the frog is, while B and C are possible locations for his second jump, while O is everything else. If we land on a C, we have reached the vertical side. However, if we land on a B, we can see that there is an equal chance of reaching the horizontal or vertical side, since we are symmetrically between them. So we have the probability of landing on a C is 1/4, while B is 3/4. Since C means that we have "succeeded", while B means that we have a half chance, we compute $1 \cdot C + \frac{1}{2} \cdot B$.


\[1 \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4}\] \[\frac{1}{4} + \frac{3}{8}\] We get $\frac{5}{8}$, or $B$ \[\text{O O O O O}\] \[\text{O B O O O}\] \[\text{C A B O O}\] \[\text{O B O O O}\] \[\text{O O O O O}\] -yeskay

Solution 3

If the frog is on one of the 2 diagonals, the chance of landing on vertical or horizontal each becomes $\frac{1}{2}$. Since it starts on $(1,2)$, there is a $\frac{3}{4}$ chance (up, down, or right) it will reach a diagonal on the first jump and $\frac{1}{4}$ chance (left) it will reach the vertical side. The probablity of landing on a vertical is $\frac{1}{4}+\frac{3}{4} * \frac{1}{2}=\boxed{\textbf{(B)} \frac{5}{8}.}$ - Lingjun.

Solution 4 (Complete States)

Let $P_{(x,y)}$ denote the probability of the frog's sequence of jumps ends with it hitting a vertical edge when it is at $(x,y)$. Note that $P_{(1,2)}=P_{(3,2)}$ by reflective symmetry over the line $x=2$. Similarly, $P_{(1,1)}=P_{(1,3)}=P_{(3,1)}=P_{(3,3)}$, and $P_{(2,1)}=P_{(2,3)}$. Now we create equations for the probabilities at each of these points/states by considering the probability of going either up, down, left, or right from that point: \[P_{(1,2)}=\frac{1}{4}+\frac{1}{2}P_{(1,1)}+\frac{1}{4}P_{(2,2)}\] \[P_{(2,2)}=\frac{1}{2}P_{(1,2)}+\frac{1}{2}P_{(2,1)}\] \[P_{(1,1)}=\frac{1}{4}+\frac{1}{4}P_{(1,2)}+\frac{1}{4}P_{(2,1)}\] \[P_{(2,1)}=\frac{1}{2}P_{(1,1)}+\frac{1}{4}P_{(2,2)}\] We have a system of $4$ equations in $4$ variables, so we can solve for each of these probabilities. Plugging the second equation into the fourth equation gives \[P_{(2,1)}=\frac{1}{2}P_{(1,1)}+\frac{1}{4}\left(\frac{1}{2}P_{(1,2)}+\frac{1}{2}P_{(2,1)}\right)\] \[P_{(2,1)}=\frac{8}{7}\left(\frac{1}{2}P_{(1,1)}+\frac{1}{8}P_{(1,2)}\right)=\frac{4}{7}P_{(1,1)}+\frac{1}{7}P_{(1,2)}\] Plugging in the third equation into this gives \[P_{(2,1)}=\frac{4}{7}\left(\frac{1}{4}+\frac{1}{4}P_{(1,2)}+\frac{1}{4}P_{(2,1)}\right)+\frac{1}{7}P_{(1,2)}\] \[P_{(2,1)}=\frac{7}{6}\left(\frac{1}{7}+\frac{2}{7}P_{(1,2)}\right)=\frac{1}{6}+\frac{1}{3}P_{(1,2)}\text{    (*)}\] Next, plugging in the second and third equation into the first equation yields \[P_{(1,2)}=\frac{1}{4}+\frac{1}{2}\left(\frac{1}{4}+\frac{1}{4}P_{(1,2)}+\frac{1}{4}P_{(2,1)}\right)+\frac{1}{4}\left(\frac{1}{2}P_{(1,2)}+\frac{1}{2}P_{(2,1)}\right)\] \[P_{(1,2)}=\frac{3}{8}+\frac{1}{4}P_{(1,2)}+\frac{1}{4}P_{(2,1)}\] Now plugging in (*) into this, we get \[P_{(1,2)}=\frac{3}{8}+\frac{1}{4}P_{(1,2)}+\frac{1}{4}\left(\frac{1}{6}+\frac{1}{3}P_{(1,2)}\right)\] \[P_{(1,2)}=\frac{3}{2}\cdot\frac{5}{12}=\boxed{\textbf{(B) }\frac{5}{8}}\] -mathisawesome2169

Solution 5(Last Resort)

Please note that this is only a simple solution that is not guaranteed to work for similar problems. This is also my first time writing a solution.

In a 4 x 4 square, there are a total of 5 + 3 + 5 + 3 = 16 points on the edges. Of these points, 10 of them are on the vertical sides. So the possibility of hitting a vertical sides given a random series of jumps is $\frac{10}{16}$ which simplifies to $\frac{5}{8}$.

Therefore the answer is \[\boxed{\textbf{(B) }\frac{5}{8}}\] -Starshooter11

Video Solution 1

IceMatrix's Solution (Starts at 4:40)

Video Solution 2

On The Spot STEM's Solution

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS