2020 AMC 10A Problems/Problem 18

Revision as of 23:32, 31 January 2020 by Emerald block (talk | contribs) (calculation error fixed (wrong number of even products))

Problem

Let $(a,b,c,d)$ be an ordered quadruple of not necessarily distinct integers, each one of them in the set ${0,1,2,3}.$ For how many such quadruples is it true that $a\cdot d-b\cdot c$ is odd? (For example, $(0,3,1,1)$ is one such quadruple, because $0\cdot 1-3\cdot 1 = -3$ is odd.)

$\textbf{(A) } 48 \qquad \textbf{(B) } 64 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 128 \qquad \textbf{(E) } 192$

Solution 1

In order for $a\cdot d-b\cdot c$ to be odd, consider parity. We must have (even)-(odd) or (odd)-(even). There are $2 \cdot 4 + 2 \cdot 2 = 12$ ways to pick numbers to obtain an even product. There are $2 \cdot 2 = 4$ ways to obtain an odd product. Therefore, the total amount of ways to make $a\cdot d-b\cdot c$ odd is $2 \cdot (12 \cdot 4) = \boxed{\bold{(C)}\ 96}$.

-Midnight

Solution 2

Consider parity. We need exactly one term to be odd, one term to be even. Because of symmetry, we can set $ad$ to be odd and $bc$ to be even, then multiply by $2.$ If $ad$ is odd, both $a$ and $d$ must be odd, therefore there are $2\cdot2=4$ possibilities for $ad.$ Consider $bc.$ Let us say that $b$ is even. Then there are $2\cdot4=8$ possibilities for $bc.$ However, $b$ can be odd, in which case we have $2\cdot2=4$ more possibilities for $bc.$ Thus there are $12$ ways for us to choose $bc$ and $4$ ways for us to choose $ad.$ Therefore, also considering symmetry, we have $2*4*12=96$ total values of $ad-bc.$ $(C)$

Video Solution

https://youtu.be/RKlG6oZq9so

~IceMatrix

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS