Difference between revisions of "2020 AMC 10A Problems/Problem 21"

(Created page with "There exists a unique strictly increasing sequence of nonnegative integers <math>a_1 < a_2 < … < a_k</math> such that<cmath>\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} +...")
 
Line 2: Line 2:
  
 
<math>\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306</math>
 
<math>\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306</math>
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2020|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 21:04, 31 January 2020

There exists a unique strictly increasing sequence of nonnegative integers $a_1 < a_2 < … < a_k$ such that\[\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + … + 2^{a_k}.\]What is $k?$

$\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306$

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS