Difference between revisions of "2020 AMC 10A Problems/Problem 6"

(Video Solution 1)
 
(22 intermediate revisions by 16 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2020 AMC 12A Problems|2020 AMC 12A #4]] and [[2020 AMC 10A Problems|2020 AMC 10A #6]]}}
 +
 +
==Problem==
 +
 
How many <math>4</math>-digit positive integers (that is, integers between <math>1000</math> and <math>9999</math>, inclusive) having only even digits are divisible by <math>5?</math>
 
How many <math>4</math>-digit positive integers (that is, integers between <math>1000</math> and <math>9999</math>, inclusive) having only even digits are divisible by <math>5?</math>
  
 
<math>\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500</math>
 
<math>\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500</math>
  
== Solution ==
+
== Solution==
First, we need to note that the digits have to be even, but since only one even digit for the units digit (<math>0</math>) we get <math>4\cdot5\cdot5\cdot1=\boxed{(B)100}</math>.
+
The units digit, for all numbers divisible by 5, must be either <math>0</math> or <math>5</math>. However, since all digits are even, the units digit must be <math>0</math>. The middle two digits can be 0, 2, 4, 6, or 8, but the thousands digit can only be 2, 4, 6, or 8 since it cannot be zero. There is one choice for the units digit, 5 choices for each of the middle 2 digits, and 4 choices for the thousands digit, so there is a total of <math>4\cdot5\cdot5\cdot1 = \boxed{\textbf{(B) } 100} \qquad</math> numbers.
 +
 
 +
==Video Solution 1==
 +
 
 +
Education, the Study of Everything
 +
 
 +
https://youtu.be/pvqpXWAvtAk
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/JEjib74EmiY
 +
 
 +
~IceMatrix
  
-middletonkids
+
==Video Solution 3==
 +
https://youtu.be/Ep6XF3VUO3E
  
== Solution 2 ==
+
~savannahsolver
The ones digit, for all numbers divisible by 5, must be either <math>0</math> or <math>5</math>. However, from the restriction in the problem, it must be even, giving us exactly one choice (0) for this digit. For the middle two digits, we may choose any even integer from <math>[0, 8]</math>, meaning that we have <math>5</math> total options. For the first digit, we follow similar intuition but realize that it cannot be <math>0</math>, hence giving us 4 possibilities. Therefore, using the multiplication rule, we get <math>4\times 5 \times 5 \times 1 = \boxed{\textbf{(B) } 100}</math>. ~ciceronii
 
  
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2020|ab=A|num-b=5|num-a=7}}
 
{{AMC10 box|year=2020|ab=A|num-b=5|num-a=7}}
 +
{{AMC12 box|year=2020|ab=A|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:21, 7 October 2022

The following problem is from both the 2020 AMC 12A #4 and 2020 AMC 10A #6, so both problems redirect to this page.

Problem

How many $4$-digit positive integers (that is, integers between $1000$ and $9999$, inclusive) having only even digits are divisible by $5?$

$\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500$

Solution

The units digit, for all numbers divisible by 5, must be either $0$ or $5$. However, since all digits are even, the units digit must be $0$. The middle two digits can be 0, 2, 4, 6, or 8, but the thousands digit can only be 2, 4, 6, or 8 since it cannot be zero. There is one choice for the units digit, 5 choices for each of the middle 2 digits, and 4 choices for the thousands digit, so there is a total of $4\cdot5\cdot5\cdot1 = \boxed{\textbf{(B) } 100} \qquad$ numbers.

Video Solution 1

Education, the Study of Everything

https://youtu.be/pvqpXWAvtAk

Video Solution 2

https://youtu.be/JEjib74EmiY

~IceMatrix

Video Solution 3

https://youtu.be/Ep6XF3VUO3E

~savannahsolver

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png