Difference between revisions of "2020 AMC 10A Problems/Problem 7"

(See Also)
(Problem)
Line 1: Line 1:
 
2020 AMC 10A Problems/Problem 7
 
2020 AMC 10A Problems/Problem 7
 
== Problem ==
 
== Problem ==
 
+
The <math>25</math> integers from <math>-10</math> to <math>14,</math> inclusive, can be arranged to form a <math>5</math>-by-<math>5</math> square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum?
  
 
== Solution ==
 
== Solution ==

Revision as of 21:20, 31 January 2020

2020 AMC 10A Problems/Problem 7

Problem

The $25$ integers from $-10$ to $14,$ inclusive, can be arranged to form a $5$-by-$5$ square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum?

Solution

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS