2020 AMC 10B Problems/Problem 15

Revision as of 04:42, 16 April 2021 by MRENTHUSIASM (talk | contribs) (Solution 3 (Illustrations))

Problem

Steve wrote the digits $1$, $2$, $3$, $4$, and $5$ in order repeatedly from left to right, forming a list of $10,000$ digits, beginning $123451234512\ldots.$ He then erased every third digit from his list (that is, the $3$rd, $6$th, $9$th, $\ldots$ digits from the left), then erased every fourth digit from the resulting list (that is, the $4$th, $8$th, $12$th, $\ldots$ digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions $2019, 2020, 2021$?

$\textbf{(A)} \text{ 7} \qquad \textbf{(B)} \text{ 9} \qquad \textbf{(C)} \text{ 10} \qquad \textbf{(D)} \text{ 11} \qquad \textbf{(E)} \text{ 12}$

Solution 1

After erasing every third digit, the list becomes $1245235134\ldots$ repeated. After erasing every fourth digit from this list, the list becomes $124235341452513\ldots$ repeated. Finally, after erasing every fifth digit from this list, the list becomes $124253415251\ldots$ repeated. Since this list repeats every $12$ digits and since $2019,2020,2021$ are $3,4,5$ respectively in $\pmod{12},$ we have that the $2019$th, $2020$th, and $2021$st digits are the $3$rd, $4$th, and $5$th digits respectively. It follows that the answer is $4+2+5= \boxed {\textbf{(D)} \text{ 11}}.$

Solution 2

As the LCM of 3, 4, and 5 is $60$, let's look at a 60-digit block of original numbers (many will be erased by Steve). After he erases every third number (1/3), then every fourth number of what remains (1/4), then every fifth number of what remains (1/5), we are left with $\dfrac{2}{3} \cdot \dfrac{3}{4} \cdot \dfrac{4}{5} \cdot 60=24$ digits from this 60-digit block. $2019 \equiv 3 \pmod {24}, 2020 \equiv 4 \pmod {24}, 2021 \equiv 5 \pmod {24}$. Writing out the first few digits of this sequence, we have $\underbrace{1}_{\#1}, \underbrace{2}_{\#2}, \cancel{3}, \underbrace{4}_{\#3}, \cancel{5}, \cancel{1}, \underbrace{2}_{\#4}, \cancel{3}, \cancel{4}, \underbrace{5}_{\#5}, \dots$. Therefore, our answer is $4+2+5=\boxed{\textbf{(D) }11}$. ~BakedPotato66

Solution 3 (Illustrations of Solutions 1 and 2)

Note that cycles exist initially and after each round of erasing digits.

Two solutions follow from here:

Solution 3.1 (Stepwise: Similar to Solution 1)

We will use parentheses to denote a cycle. Initially, the list has a cycle of length $5:$ \[(12345)=12345123451234512345\cdots.\]

I will finish shortly. No edit please.

~MRENTHUSIASM

Solution 3.2 (Direct: Similar to Solution 2)

I will finish shortly. No edit please.

~MRENTHUSIASM

Video Solution

https://youtu.be/t6yjfKXpwDs 16:40 ~IceMatrix

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png