Difference between revisions of "2020 AMC 10B Problems/Problem 21"

m (Solution 4)
m (Solution 5 (HARD Calculation))
Line 63: Line 63:
 
Plot a point <math>F'</math> such that <math>F'I</math> and <math>AB</math> are parallel and extend line <math>FB</math> to point <math>B'</math> such that <math>FIB'F'</math> forms a square. Extend line <math>AE</math> to meet line <math>F'B'</math> and point <math>E'</math> is the intersection of the two. The area of this square is equivalent to <math>FI^2</math>. We see that the area of square <math>ABCD</math> is <math>4</math>, meaning each side is of length 2. The area of the pentagon <math>EIFF'E'</math> is <math>2</math>. Length <math>AE=\sqrt{2}</math>, thus <math>EB=2-\sqrt{2}</math>. Triangle <math>EB'E'</math> is isosceles, and the area of this triangle is <math>\frac{1}{2}(4-2\sqrt{2})(2-\sqrt{2})=6-4\sqrt{2}</math>. Adding these two areas, we get <cmath>2+6-4\sqrt{2}=8-4\sqrt{2}\rightarrow \boxed{\mathrm{(B)}}</cmath>. --OGBooger
 
Plot a point <math>F'</math> such that <math>F'I</math> and <math>AB</math> are parallel and extend line <math>FB</math> to point <math>B'</math> such that <math>FIB'F'</math> forms a square. Extend line <math>AE</math> to meet line <math>F'B'</math> and point <math>E'</math> is the intersection of the two. The area of this square is equivalent to <math>FI^2</math>. We see that the area of square <math>ABCD</math> is <math>4</math>, meaning each side is of length 2. The area of the pentagon <math>EIFF'E'</math> is <math>2</math>. Length <math>AE=\sqrt{2}</math>, thus <math>EB=2-\sqrt{2}</math>. Triangle <math>EB'E'</math> is isosceles, and the area of this triangle is <math>\frac{1}{2}(4-2\sqrt{2})(2-\sqrt{2})=6-4\sqrt{2}</math>. Adding these two areas, we get <cmath>2+6-4\sqrt{2}=8-4\sqrt{2}\rightarrow \boxed{\mathrm{(B)}}</cmath>. --OGBooger
  
== Solution 5 (HARD Calculation) ==
+
== Solution 4 (HARD Calculation) ==
 
We can easily observe that the area of square <math>ABCD</math> is 4 and its side length is 2 since all four regions that build up the square has area 1.  
 
We can easily observe that the area of square <math>ABCD</math> is 4 and its side length is 2 since all four regions that build up the square has area 1.  
 
Extend <math>FI</math> and let the intersection with <math>AB</math> be <math>K</math>. Connect <math>AC</math>, and let the intersection of <math>AC</math> and <math>HE</math> be <math>L</math>.
 
Extend <math>FI</math> and let the intersection with <math>AB</math> be <math>K</math>. Connect <math>AC</math>, and let the intersection of <math>AC</math> and <math>HE</math> be <math>L</math>.

Revision as of 22:10, 3 November 2021

The following problem is from both the 2020 AMC 10B #21 and 2020 AMC 12B #18, so both problems redirect to this page.

Problem

In square $ABCD$, points $E$ and $H$ lie on $\overline{AB}$ and $\overline{DA}$, respectively, so that $AE=AH.$ Points $F$ and $G$ lie on $\overline{BC}$ and $\overline{CD}$, respectively, and points $I$ and $J$ lie on $\overline{EH}$ so that $\overline{FI} \perp \overline{EH}$ and $\overline{GJ} \perp \overline{EH}$. See the figure below. Triangle $AEH$, quadrilateral $BFIE$, quadrilateral $DHJG$, and pentagon $FCGJI$ each has area $1.$ What is $FI^2$?

[asy] real x=2sqrt(2); real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); real z=2sqrt(8-4sqrt(2)); pair A, B, C, D, E, F, G, H, I, J; A = (0,0); B = (4,0); C = (4,4); D = (0,4); E = (x,0); F = (4,y); G = (y,4); H = (0,x); I = F + z * dir(225); J = G + z * dir(225);  draw(A--B--C--D--A); draw(H--E); draw(J--G^^F--I); draw(rightanglemark(G, J, I), linewidth(.5)); draw(rightanglemark(F, I, E), linewidth(.5));  dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$E$", E, S); dot("$F$", F, dir(0)); dot("$G$", G, N); dot("$H$", H, W); dot("$I$", I, SW); dot("$J$", J, SW);  [/asy]

$\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2$

Solution 1

Since the total area is $4$, the side length of square $ABCD$ is $2$. We see that since triangle $HAE$ is a right isosceles triangle with area 1, we can determine sides $HA$ and $AE$ both to be $\sqrt{2}$. Now, consider extending $FB$ and $IE$ until they intersect. Let the point of intersection be $K$. We note that $EBK$ is also a right isosceles triangle with side $2-\sqrt{2}$ and find its area to be $3-2\sqrt{2}$. Now, we notice that $FIK$ is also a right isosceles triangle (because $\angle EKB=45^\circ$) and find it's area to be $\frac{1}{2}$$FI^2$. This is also equal to $1+3-2\sqrt{2}$ or $4-2\sqrt{2}$. Since we are looking for $FI^2$, we want two times this. That gives $\boxed{\textbf{(B)}\ 8-4\sqrt{2}}$.~TLiu

Solution 2

Draw the auxiliary line $AC$. Denote by $M$ the point it intersects with $HE$, and by $N$ the point it intersects with $GF$. Last, denote by $x$ the segment $FN$, and by $y$ the segment $FI$. We will find two equations for $x$ and $y$, and then solve for $y^2$.

Since the overall area of $ABCD$ is $4 \;\; \Longrightarrow \;\;  AB=2$, and $AC=2\sqrt{2}$. In addition, the area of $\bigtriangleup AME = \frac{1}{2} \;\; \Longrightarrow \;\; AM=1$.

The two equations for $x$ and $y$ are then:

$\bullet$ Length of $AC$: $1+y+x = 2\sqrt{2}  \;\; \Longrightarrow \;\; x = (2\sqrt{2}-1) - y$

$\bullet$ Area of CMIF: $\frac{1}{2}x^2+xy = \frac{1}{2}  \;\; \Longrightarrow \;\; x(x+2y)=1$.

Substituting the first into the second, yields $\left[\left(2\sqrt{2}-1\right)-y\right]\cdot \left[\left(2\sqrt{2}-1\right)+y\right]=1$

Solving for $y^2$ gives $\boxed{\textbf{(B)}\ 8-4\sqrt{2}}$ ~DrB

Solution 3

Plot a point $F'$ such that $F'I$ and $AB$ are parallel and extend line $FB$ to point $B'$ such that $FIB'F'$ forms a square. Extend line $AE$ to meet line $F'B'$ and point $E'$ is the intersection of the two. The area of this square is equivalent to $FI^2$. We see that the area of square $ABCD$ is $4$, meaning each side is of length 2. The area of the pentagon $EIFF'E'$ is $2$. Length $AE=\sqrt{2}$, thus $EB=2-\sqrt{2}$. Triangle $EB'E'$ is isosceles, and the area of this triangle is $\frac{1}{2}(4-2\sqrt{2})(2-\sqrt{2})=6-4\sqrt{2}$. Adding these two areas, we get \[2+6-4\sqrt{2}=8-4\sqrt{2}\rightarrow \boxed{\mathrm{(B)}}\]. --OGBooger

Solution 4 (HARD Calculation)

We can easily observe that the area of square $ABCD$ is 4 and its side length is 2 since all four regions that build up the square has area 1. Extend $FI$ and let the intersection with $AB$ be $K$. Connect $AC$, and let the intersection of $AC$ and $HE$ be $L$. Notice that since the area of triangle $AEH$ is 1 and $AE=AH$ , $AE=AH=\sqrt{2}$, therefore $BE=HD=2-\sqrt{2}$. Let $CG=CF=m$, then $BF=DG=2-m$. Also notice that $KB=2-m$, thus $KE=KB-BE=2-m-(2-\sqrt{2})=\sqrt{2}-m$. Now use the condition that the area of quadrilateral $BFIE$ is 1, we can set up the following equation: $\frac{1}{2}(2-m)^2-\frac{1}{4}(\sqrt{2}-m)^2=1$ We solve the equation and yield $m=\frac{8-2\sqrt{2}-\sqrt{64-32\sqrt{2}}}{2}$. Now notice that $FI=AC-AL-\frac{m}{\sqrt{2}}=2\sqrt{2}-1-\frac{\sqrt{2}}{2}*\frac{8-2\sqrt{2}-\sqrt{64-32\sqrt{2}}}{2}$ $=2\sqrt{2}-1-\frac{8\sqrt{2}-4-\sqrt{128-64\sqrt2}}{4}$ $=\frac{\sqrt{128-64\sqrt{2}}}{4}$. Hence $FI^2=\frac{128-64\sqrt{2}}{16}=8-4\sqrt{2}$. -HarryW

-edit: annabelle0913

Solution 6

[asy] real x=2sqrt(2); real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); real z=2sqrt(8-4sqrt(2)); real k= 8-2sqrt(2); real l= 2sqrt(2)-4; pair A, B, C, D, E, F, G, H, I, J, L, M, K; A = (0,0); B = (4,0); C = (4,4); D = (0,4); E = (x,0); F = (4,y); G = (y,4); H = (0,x); I = F + z * dir(225); J = G + z * dir(225); L = (k,0); M = F + z * dir(315); K = (4,l);  draw(A--B--C--D--A); draw(H--E); draw(J--G^^F--I); draw(F--M); draw(M--L); draw(E--K,dashed+linewidth(.5)); draw(K--L,dashed+linewidth(.5)); draw(B--L); draw(rightanglemark(G, J, I), linewidth(.5)); draw(rightanglemark(F, I, E), linewidth(.5)); draw(rightanglemark(F, M, L), linewidth(.5)); fill((4,0)--(k,0)--M--(4,y)--cycle, gray); dot("$A$", A, S); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$E$", E, S); dot("$G$", G, N); dot("$H$", H, W); dot("$I$", I, SW); dot("$J$", J, SW); dot("$K$", K, S); dot("$F(G)$", F, E); dot("$J'$", M, dir(90)); dot("$H'$", L, S); dot("$B(D)$", B, S);   [/asy] Easily, we can find that: quadrilateral $BFIE$ and $DHJG$ are congruent with each other, so we can move $DHJG$ to the shaded area ($F$ and $G$, $B$ and $D$ overlapping) to form a square $FIKJ'$ ($DG$ = $FB$, $CG$ = $FC$, ${\angle} CGF$ = ${\angle}CFG$ = $45^{\circ}$ so ${\angle} IFJ'= 90^{\circ}$). Then we can solve $AH$ = $AE$ = $\sqrt{2}$, $EB$ = $2-\sqrt{2}$, $EK$ = $2\sqrt{2}-2$.

$FI^2$ = $area$ of $BFIE$ $+$ $area$ of $FJ'H'B$ $+$ $area$ of $EH'K$ = $1 + 1 + \frac{1}{2}(2\sqrt{2}-2)^2=8-4\sqrt{2}\rightarrow \boxed{\mathrm{(B)}}$

--Ryan Zhang @BRS

Video Solution 1

https://www.youtube.com/watch?v=AKJXB07Sat0&list=PLLCzevlMcsWNcTZEaxHe8VaccrhubDOlQ&index=7 ~ MathEx

Video Solution 2 by the Beauty of Math

https://youtu.be/VZYe3Hu88OA?t=189

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png