2020 AMC 12A Problems/Problem 22
Problem
Let and be the sequences of real numbers such that for all integers , where . What is
Solution 1
Square the given equality to yield so and
Solution 2 (DeMoivre's Formula)
Note that . Let , then, we know that , so . Therefore, . Aha is a geometric sequence that evaluates to . We can quickly see that . . Therefore, . The imaginary part is , so our answer is .(Which is answer choice
~AopsUser101, minor edit by vsamc stating that the answer choice is B
Solution 3
Clearly . So we have . By linearity, we have the latter is equivalent to . Expanding the summand yields -vsamc
See Also
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.