2020 AMC 12B Problems/Problem 11

Revision as of 22:01, 7 February 2020 by N828335 (talk | contribs) (Solution)

Problem

As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length $2$ so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region––inside the hexagon but outside all of the semicircles? [asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE); [/asy] $\textbf{(A)}\ 6\sqrt3-3\pi \qquad\textbf{(B)}\ \frac{9\sqrt3}{2}-2\pi \qquad\textbf{(C)}\ \frac{3\sqrt3}{2}-\frac{\pi}{3} \qquad\textbf{(D)}\ 3\sqrt3-\pi \\ \qquad\textbf{(E)}\ \frac{9\sqrt3}{2}-\pi$

Solution

First, subdivide the hexagon into 24 equilateral triangles with length 1: [asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE);  draw((1,0)--(3,2sqrt(3))); draw((3,0)--(1,2sqrt(3))); draw((4,sqrt(3))--(0,sqrt(3))); draw((2,0)--(3.5,3sqrt(3)/2)); draw((3.5,sqrt(3)/2)--(2,2sqrt(3))); draw((3.5,3sqrt(3)/2)--(0.5,3sqrt(3)/2)); draw((2,2sqrt(3))--(0.5,sqrt(3)/2)); draw((2,0)--(0.5,3sqrt(3)/2)); draw((3.5,sqrt(3)/2)--(0.5,sqrt(3)/2)); [/asy] Now note that the entire shaded region is just 6 times this part: [asy] size(100); fill((2,sqrt(3))--(2.5,3sqrt(3)/2)--(2,2sqrt(3))--(1.5,3sqrt(3)/2)--cycle,gray(0.4)); fill(arc((2,2sqrt(3)),1,240,300)--(2,2sqrt(3))--cycle,white);  draw(arc((2,2sqrt(3)),1,240,300)--(2,2sqrt(3))--cycle); label("$1$",(2.25,7sqrt(3)/4),NE);  draw((2,sqrt(3))--(2.5,3sqrt(3)/2)--(2,2sqrt(3))--(1.5,3sqrt(3)/2)--cycle); draw((2.5,3sqrt(3)/2)--(1.5,3sqrt(3)/2)); [/asy] The entire rhombus is just 2 equilatrial triangles, so it has an area of: \[2\cdot\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{2}\] The arc that is not included has an area of: \[\frac16 \cdot\pi \cdot1^2 = \frac{\pi}{6}\] Hence, the area of the shaded region in that section is \[\frac{\sqrt{3}}{2}-\frac{\pi}{6}\] For a final area of: \[6\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)=3\sqrt{3}-\pi\Rightarrow \boxed{\mathrm{(D)}}\] ~N828335

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png