Difference between revisions of "2020 AMC 12B Problems/Problem 13"

(Solution 2 (Properties of Logarithms: Direct))
m (Solution 4 (Change of Base Formula))
Line 54: Line 54:
  
 
~ TheBeast5520
 
~ TheBeast5520
 +
 +
== Solution 5 (Guesstimation)==
 +
Note: Only use this method if all else fails and you cannot find a way to simplify the logarithms.
  
 
== Video Solution ==
 
== Video Solution ==

Revision as of 11:52, 13 August 2021

Problem

Which of the following is the value of $\sqrt{\log_2{6}+\log_3{6}}?$

$\textbf{(A) } 1 \qquad\textbf{(B) } \sqrt{\log_5{6}} \qquad\textbf{(C) } 2 \qquad\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}} \qquad\textbf{(E) } \sqrt{\log_2{6}}+\sqrt{\log_3{6}}$

Solution 1 (Observations)

Using the knowledge of the powers of $2$ and $3,$ we know that $\log_2{6}>2.5$ and $\log_3{6}>1.5.$ Therefore, \[\sqrt{\log_2{6}+\log_3{6}}>\sqrt{2.5+1.5}=2.\] Only choices $\textbf{(D)}$ and $\textbf{(E)}$ are greater than $2,$ but $\textbf{(E)}$ is certainly incorrect--if we compare the squares of the original expression and $\textbf{(E)},$ then they are clearly not equal. So, the answer is $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}.$

~Baolan

~Solasky (first edit on wiki!)

~chrisdiamond10

~MRENTHUSIASM (reformatted and merged the thoughts of all contributors)

Solution 2 (Properties of Logarithms: Direct)

Note that:

  1. $\log_b{(uv)}=\log_b u + \log_b v.$
  2. $\log_b u\cdot\log_u b=1.$

We use these properties of logarithms to rewrite the original expression: \begin{align*} \sqrt{\log_2{6}+\log_3{6}}&=\sqrt{(\log_2{2}+\log_2{3})+(\log_3{2}+\log_3{3})} \\ &=\sqrt{2+\log_2{3}+\log_3{2}} \\ &=\sqrt{\left(\sqrt{\log_2{3}}+\sqrt{\log_3{2}}\right)^2} \\ &=\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}. \end{align*} ~MRENTHUSIASM

Solution 3 (Properties of Logarithms: Stepwise)

$\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\log_2{2}+\log_2{3}+\log_3{2}+\log_3{3}}=\sqrt{2+\log_2{3}+\log_3{2}}$. If we call $\log_2{3} = x$, then we have

$\sqrt{2+x+\frac{1}{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{\log_2{3}}+\frac{1}{\sqrt{\log_2{3}}}=\sqrt{\log_2{3}}+\sqrt{\log_3{2}}$. So our answer is $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}$.

~JHawk0224

Solution 4 (Change of Base Formula)

First, \[\sqrt{\log_2{6}+\log_3{6}} = \sqrt{\frac{\log{6}}{\log{2}} + \frac{\log{6}}{\log{3}}} = \sqrt{\frac{\log{6}\cdot\log{3} + \log{6}\cdot\log{2}}{\log{3}\cdot\log{2}}} = \sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}}.\] From here, \[\sqrt{\frac{\log{6}(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2 + \log 3)(\log 2 + \log 3)}{\log 2\cdot \log 3}} = \sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}}.\] Finally, \begin{align*} \sqrt{\frac{(\log 2)^2 + 2\cdot\log2\cdot\log3 + (\log3)^2}{\log 2\cdot\log 3}} &= \sqrt{\frac{(\log2 + \log3)^2}{\log 2\cdot\log 3}} \\ &= \frac{\log 2}{\sqrt{\log 2\cdot\log 3}} + \frac{\log 3}{\sqrt{\log 2\cdot\log 3}} \\ &= \sqrt{\frac{\log 2}{\log 3}} + \sqrt{\frac{\log 3}{\log 2}} \\ &= \sqrt{\log_3 2} + \sqrt{\log_2 3}. \end{align*} Answer: $\boxed{\textbf{(D) } \sqrt{\log_2{3}}+\sqrt{\log_3{2}}}$

Note that in this solution, even the most minor steps have been written out. In the actual test, this solution would be quite fast, and much of it could easily be done in your head.

~ TheBeast5520

Solution 5 (Guesstimation)

Note: Only use this method if all else fails and you cannot find a way to simplify the logarithms.

Video Solution

https://youtu.be/0xgTR3UEqbQ

~IceMatrix

Video Solution

https://youtu.be/RdIIEhsbZKw?t=1463

~ pi_is_3.14

Video Solution (Meta-Solving Technique)

https://youtu.be/GmUWIXXf_uk?t=1298

~ pi_is_3.14

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png