Difference between revisions of "2020 AMC 12B Problems/Problem 6"

(Created page with "==Problem 6== For all integers <math>n \geq 9,</math> the value of <cmath>\frac{(n+2)!-(n+1)!}{n!}</cmath>is always which of the following? <math>\textbf{(A) } \text{a multi...")
 
(Solution)
Line 10: Line 10:
 
Therefore, <cmath>\frac{(n+2)!-(n+1)!}{n!} = (n+2)(n+1)-(n+1)</cmath>
 
Therefore, <cmath>\frac{(n+2)!-(n+1)!}{n!} = (n+2)(n+1)-(n+1)</cmath>
 
This expression can be shown as <cmath>\(n+1)(n+2-1) = (n+1)^2</cmath>
 
This expression can be shown as <cmath>\(n+1)(n+2-1) = (n+1)^2</cmath>
which proves that the answer is $\textbf{(D)}.
+
which proves that the answer is <math>\textbf{(D)}</math>.
 +
 
 +
==Problem 6==
 +
 
 +
For all integers <math>n \geq 9,</math> the value of
 +
<cmath>\frac{(n+2)!-(n+1)!}{n!}</cmath>is always which of the following?
 +
 
 +
<math>\textbf{(A) } \text{a multiple of }4 \qquad \textbf{(B) } \text{a multiple of }10 \qquad \textbf{(C) } \text{a prime number} \\ \textbf{(D) } \text{a perfect square} \qquad \textbf{(E) } \text{a perfect cube}</math>

Revision as of 20:22, 7 February 2020

Problem 6

For all integers $n \geq 9,$ the value of \[\frac{(n+2)!-(n+1)!}{n!}\]is always which of the following?

$\textbf{(A) } \text{a multiple of }4 \qquad \textbf{(B) } \text{a multiple of }10 \qquad \textbf{(C) } \text{a prime number} \\ \textbf{(D) } \text{a perfect square} \qquad \textbf{(E) } \text{a perfect cube}$

Solution

\[\frac{(n+2)!-(n+1)!}{n!}\] can be simplified by common denominator n!. Therefore, \[\frac{(n+2)!-(n+1)!}{n!} = (n+2)(n+1)-(n+1)\]

This expression can be shown as

\[\(n+1)(n+2-1) = (n+1)^2\] (Error compiling LaTeX. Unknown error_msg)

which proves that the answer is $\textbf{(D)}$.

Problem 6

For all integers $n \geq 9,$ the value of \[\frac{(n+2)!-(n+1)!}{n!}\]is always which of the following?

$\textbf{(A) } \text{a multiple of }4 \qquad \textbf{(B) } \text{a multiple of }10 \qquad \textbf{(C) } \text{a prime number} \\ \textbf{(D) } \text{a perfect square} \qquad \textbf{(E) } \text{a perfect cube}$