Difference between revisions of "2020 AMC 8 Problems/Problem 14"

(Removed incorrect edits by user Vrajnash)
(Video Solution)
 
(7 intermediate revisions by 4 users not shown)
Line 42: Line 42:
  
 
==Solution 1==
 
==Solution 1==
We can see that the dotted line is halfway between <math>4{,}500</math> and <math>5{,}000</math>, so is at <math>4{,}750</math>. As this is the average population of all <math>20</math> cities, the total population is simply <math>4{,}750 \cdot 20 = \boxed{\textbf{(D) }95{,}000}</math>.
+
We can see that the dotted line is exactly halfway between <math>4{,}500</math> and <math>5{,}000</math>, so it is at <math>4{,}750</math>. As this is the average population of all <math>20</math> cities, the total population is simply <math>4{,}750 \cdot 20 = \boxed{\textbf{(D) }95{,}000}</math>.
  
 
==Solution 2 (estimation)==
 
==Solution 2 (estimation)==
The dashed line, which represents the average population of each city, is slightly below <math>5{,}000</math>. Since there are <math>20</math> cities, the answer is slightly less than <math>20\cdot 5{,}000 \approx 100{,}000</math>, which is closest to <math>\boxed{\textbf{(D) }95,000}</math>.
+
The dashed line, which represents the average population of each city, is slightly below <math>5{,}000</math>. Since there are <math>20</math> cities, the answer is slightly less than <math>20\cdot 5{,}000 \approx 100{,}000</math>, which is closest to <math>\boxed{\textbf{(D) }95{,}000}</math>.
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/5y4uDwZEF0M
+
https://youtu.be/xjwDsaRE_Wo
  
 
==See also==  
 
==See also==  
 
{{AMC8 box|year=2020|num-b=13|num-a=15}}
 
{{AMC8 box|year=2020|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:47, 6 January 2021

Problem

There are $20$ cities in the County of Newton. Their populations are shown in the bar chart below. The average population of all the cities is indicated by the horizontal dashed line. Which of the following is closest to the total population of all $20$ cities?

[asy] size(300);  pen shortdashed=linetype(new real[] {6,6});  // axis draw((0,0)--(0,9300), linewidth(1.25)); draw((0,0)--(11550,0), linewidth(1.25));  for (int i = 2000; i < 9000; i = i + 2000) {     draw((0,i)--(11550,i), linewidth(0.5)+1.5*grey);     label(string(i), (0,i), W); }   for (int i = 500; i < 9300; i=i+500) {     draw((0,i)--(150,i),linewidth(1.25));     if (i % 2000 == 0) {         draw((0,i)--(250,i),linewidth(1.25));     } }  int[] data = {8750, 3800, 5000, 2900, 6400, 7500, 4100, 1400, 2600, 1470, 2600, 7100, 4070, 7500, 7000, 8100, 1900, 1600, 5850, 5750}; int data_length = 20;  int r = 550; for (int i = 0; i < data_length; ++i) {     fill(((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+2)*r-100, data[i])--((i+2)*r-100,0)--cycle, 1.5*grey);     draw(((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+2)*r-100, data[i])--((i+2)*r-100,0)); }  draw((0,4750)--(11450,4750),shortdashed);  label("Cities", (11450*0.5,0), S); label(rotate(90)*"Population", (0,9000*0.5), 10*W); [/asy]

$\textbf{(A) }65{,}000 \qquad \textbf{(B) }75{,}000 \qquad \textbf{(C) }85{,}000 \qquad \textbf{(D) }95{,}000 \qquad \textbf{(E) }105{,}000$

Solution 1

We can see that the dotted line is exactly halfway between $4{,}500$ and $5{,}000$, so it is at $4{,}750$. As this is the average population of all $20$ cities, the total population is simply $4{,}750 \cdot 20 = \boxed{\textbf{(D) }95{,}000}$.

Solution 2 (estimation)

The dashed line, which represents the average population of each city, is slightly below $5{,}000$. Since there are $20$ cities, the answer is slightly less than $20\cdot 5{,}000 \approx 100{,}000$, which is closest to $\boxed{\textbf{(D) }95{,}000}$.

Video Solution

https://youtu.be/xjwDsaRE_Wo

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS