Difference between revisions of "2020 AMC 8 Problems/Problem 15"
Sevenoptimus (talk  contribs) (Removed a duplicate solution and improved LaTeX, grammar, and clarity) 
(bdot) (Tag: Undo) 
(One intermediate revision by the same user not shown)  
(No difference)

Revision as of 14:19, 23 November 2020
Problem
Suppose of equals of What percentage of is
Solution 1
Since , multiplying the given condition by shows that is percent of .
Solution 2
Letting (without loss of generality), the condition becomes . Clearly, it follows that is of , so the answer is .
Solution 3
We have and , so . Solving for , we multiply by to give , so the answer is .
Solution 4
We are given , so we may assume without loss of generality that and . This means , and thus answer is .
Video Solution
See also
2020 AMC 8 (Problems • Answer Key • Resources)  
Preceded by Problem 14 
Followed by Problem 16  
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25  
All AJHSME/AMC 8 Problems and Solutions 
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.