Difference between revisions of "2020 AMC 8 Problems/Problem 15"

(Video Solution)
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
==Problem==
 
Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math>
 
Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math>
  
Line 4: Line 5:
  
 
==Solution 1==
 
==Solution 1==
Multiply by <math>5</math> to get <math>0.75x=y</math>. The <math>0.75</math> here can be converted to <math>75\%</math>. Therefore, <math>\boxed{\textbf{C}}</math> is the answer.
+
Since <math>20\% = \frac{1}{5}</math>, multiplying the given condition by <math>5</math> shows that <math>y</math> is <math>15 \cdot 5 = \boxed{\textbf{(C) }75}</math> percent of <math>x</math>.
  
 
==Solution 2==
 
==Solution 2==
Letting <math>x=100</math>, our equation becomes <math>0.15\cdot 100 = 0.2\cdot y \implies 15 = \frac{y}{5} \implies y=75</math>. Clearly, <math>y</math> is <math>75\%</math> of <math>x</math> and the answer is <math>\boxed{\textbf{C}}</math>.<br>
+
Letting <math>x=100</math> (without loss of generality), the condition becomes <math>0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75</math>. Clearly, it follows that <math>y</math> is <math>75\%</math> of <math>x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
~[http://artofproblemsolving.com/community/user/jmansuri junaidmansuri]
 
  
 
==Solution 3==
 
==Solution 3==
Let us transform the first sentence to an equation. <math>15\%=\frac3{20}</math> and <math>20\%=\frac15.</math> So, <math>\frac3{20}x=\frac15y.</math> Therefore, <math>\frac1{20}x=\frac1{15}y</math> and <math>x=\frac43y,</math> hence <math>\boxed{\textbf{(C) }75}</math>. <br>
+
We have <math>15\%=\frac{3}{20}</math> and <math>20\%=\frac{1}{5}</math>, so <math>\frac{3}{20}x=\frac{1}{5}y</math>. Solving for <math>y</math>, we multiply by <math>5</math> to give <math>y = \frac{15}{20}x = \frac{3}{4}x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
--[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
 
  
 
==Solution 4==
 
==Solution 4==
 
+
We are given <math>0.15x = 0.20y</math>, so we may assume without loss of generality that <math>x=20</math> and <math>y=15</math>. This means <math>\frac{y}{x}=\frac{15}{20}=\frac{75}{100}</math>, and thus the answer is <math>\boxed{\textbf{(C) }75}</math>.
We are given that <math>0.15x=0.20y</math>. Multiplying both sides by <math>100</math> and dividing by <math>20</math> tells us that <math>y = \frac 34x =0.75x=\textbf{(C) }75</math>.
 
 
 
-franzliszt
 
 
 
==Solution 5==
 
 
 
We know that <math>0.15x=0.20y</math>. Therefore, we can just assume that <math>x=20</math> and <math>y=15</math>, which means that <math>\frac{y}{x}=\frac{15}{20}=\frac{75}{100}</math>, so our answer is <math>\boxed{\textbf{(C) }75}</math>.
 
 
 
- StarryNight7210
 
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/mjS-PHTw-GE
+
https://youtu.be/xjwDsaRE_Wo
 
 
~savannahsolver
 
  
 
==See also==
 
==See also==
 
{{AMC8 box|year=2020|num-b=14|num-a=16}}
 
{{AMC8 box|year=2020|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:48, 6 January 2021

Problem

Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$

$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$

Solution 1

Since $20\% = \frac{1}{5}$, multiplying the given condition by $5$ shows that $y$ is $15 \cdot 5 = \boxed{\textbf{(C) }75}$ percent of $x$.

Solution 2

Letting $x=100$ (without loss of generality), the condition becomes $0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75$. Clearly, it follows that $y$ is $75\%$ of $x$, so the answer is $\boxed{\textbf{(C) }75}$.

Solution 3

We have $15\%=\frac{3}{20}$ and $20\%=\frac{1}{5}$, so $\frac{3}{20}x=\frac{1}{5}y$. Solving for $y$, we multiply by $5$ to give $y = \frac{15}{20}x = \frac{3}{4}x$, so the answer is $\boxed{\textbf{(C) }75}$.

Solution 4

We are given $0.15x = 0.20y$, so we may assume without loss of generality that $x=20$ and $y=15$. This means $\frac{y}{x}=\frac{15}{20}=\frac{75}{100}$, and thus the answer is $\boxed{\textbf{(C) }75}$.

Video Solution

https://youtu.be/xjwDsaRE_Wo

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS