Difference between revisions of "2020 AMC 8 Problems/Problem 15"
Sevenoptimus (talk | contribs) (Removed a duplicate solution and improved LaTeX, grammar, and clarity) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math> | Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math> | ||
Line 4: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
− | + | Since <math>20\% = \frac{1}{5}</math>, multiplying the given condition by <math>5</math> shows that <math>y</math> is <math>15 \cdot 5 = \boxed{\textbf{(C) }75}</math> percent of <math>x</math>. | |
==Solution 2== | ==Solution 2== | ||
− | Letting <math>x=100</math>, | + | Letting <math>x=100</math> (without loss of generality), the condition becomes <math>0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75</math>. Clearly, it follows that <math>y</math> is <math>75\%</math> of <math>x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>. |
− | |||
==Solution 3== | ==Solution 3== | ||
− | + | We have <math>15\%=\frac{3}{20}</math> and <math>20\%=\frac{1}{5}</math>, so <math>\frac{3}{20}x=\frac{1}{5}y</math>. Solving for <math>y</math>, we multiply by <math>5</math> to give <math>y = \frac{15}{20}x = \frac{3}{4}x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>. | |
− | |||
==Solution 4== | ==Solution 4== | ||
− | + | We are given <math>0.15x = 0.20y</math>, so we may assume without loss of generality that <math>x=20</math> and <math>y=15</math>. This means <math>\frac{y}{x}=\frac{15}{20}=\frac{75}{100}</math>, and thus answer is <math>\boxed{\textbf{(C) }75}</math>. | |
− | We are given | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Video Solution== | ==Video Solution== | ||
https://youtu.be/mjS-PHTw-GE | https://youtu.be/mjS-PHTw-GE | ||
− | |||
− | |||
==See also== | ==See also== | ||
{{AMC8 box|year=2020|num-b=14|num-a=16}} | {{AMC8 box|year=2020|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:12, 20 November 2020
Problem
Suppose of equals of What percentage of is
Solution 1
Since , multiplying the given condition by shows that is percent of .
Solution 2
Letting (without loss of generality), the condition becomes . Clearly, it follows that is of , so the answer is .
Solution 3
We have and , so . Solving for , we multiply by to give , so the answer is .
Solution 4
We are given , so we may assume without loss of generality that and . This means , and thus answer is .
Video Solution
See also
2020 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.