Difference between revisions of "2020 CIME I Problems"

Line 14: Line 14:
  
 
==Problem 4==
 
==Problem 4==
There exists a unique positive real number <math>x</math> satisfying <cmath>x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}</cmath>. Given that <math>x</math> can be written in the form <math>x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}</math> for integers <math>m, n, p, q</math> with \gcd(m, n) = \gcd(p, q) = 1, find <math>m+n+p+q</math>.
+
There exists a unique positive real number <math>x</math> satisfying <cmath>x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}</cmath>. Given that <math>x</math> can be written in the form <math>x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}</math> for integers <math>m, n, p, q</math> with <math>\gcd(m, n) = \gcd(p, q) = 1</math>, find <math>m+n+p+q</math>.

Revision as of 14:31, 30 August 2020

2020 CIME I (Answer Key)
Printable version | AoPS Contest Collections

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

A knight begins on the point $(0,0)$ in the coordinate plane. From any point $(x,y)$ the knight moves to either $(x+2,y+1)$ or $(x+1,y+2)$. Find the number of ways the knight can reach $(15,15)$.

Problem 2

At the local Blast Store, there are sufficiently many items with a price of $$n.99$ for each nonnegative integer $n$. A sales tax of $7.5\%$ is applied on all items. If the total cost of a purchase, after tax, is an integer number of cents, find the minimum possible number of items in the purchase.

Problem 3

In a math competition, all teams must consist of between $12$ and $15$ members, inclusive. Mr. Beluhov has $n > 0$ students and he realizes that he cannot form teams so that each of his students is on exactly one team. Find the sum of all possible values of $n$.

Problem 4

There exists a unique positive real number $x$ satisfying \[x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}\]. Given that $x$ can be written in the form $x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}$ for integers $m, n, p, q$ with $\gcd(m, n) = \gcd(p, q) = 1$, find $m+n+p+q$.