Difference between revisions of "2020 CIME I Problems/Problem 4"

(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
{{solution}}
 
  
 +
We simply use the best technique of easy bash.
 +
 +
<math>x^2 = 2x^2 - 2\sqrt{x^4-\frac{1}{x^4}}</math>
 +
 +
<math>x^4 = 4x^4-\frac{4}{x^4}</math>
 +
 +
<math>x^8 = \frac{4}{3}</math>
 +
 +
<math>x = 2^{\frac{1}{4}}3^\frac{-1}{8}</math>
 +
 +
The answer is then <math>14</math>.
 +
 +
==See also==
 
{{CIME box|year=2020|n=I|num-b=3|num-a=5}}
 
{{CIME box|year=2020|n=I|num-b=3|num-a=5}}
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 
{{MAC Notice}}
 
{{MAC Notice}}

Latest revision as of 20:43, 27 December 2021

Problem 4

There exists a unique positive real number $x$ satisfying \[x=\sqrt{x^2+\frac{1}{x^2}} - \sqrt{x^2-\frac{1}{x^2}}.\] Given that $x$ can be written in the form $x=2^\frac{m}{n} \cdot 3^\frac{-p}{q}$ for integers $m, n, p, q$ with $\gcd(m, n) = \gcd(p, q) = 1$, find $m+n+p+q$.

Solution

We simply use the best technique of easy bash.

$x^2 = 2x^2 - 2\sqrt{x^4-\frac{1}{x^4}}$

$x^4 = 4x^4-\frac{4}{x^4}$

$x^8 = \frac{4}{3}$

$x = 2^{\frac{1}{4}}3^\frac{-1}{8}$

The answer is then $14$.

See also

2020 CIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions. AMC logo.png