2020 IMO Problems/Problem 1

Revision as of 13:29, 25 February 2022 by Bluesoul (talk | contribs) (solution 1)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Consider the convex quadrilateral $ABCD$. The point $P$ is in the interior of $ABCD$. The following ratio equalities hold: \[\angle PAD : \angle PBA : \angle DPA = 1 : 2 : 3 = \angle CBP : \angle BAP : \angle BPC.\] Prove that the following three lines meet in a point: the internal bisectors of angles $\angle ADP$ and $\angle PCB$ and the perpendicular bisector of segment $\overline{AB}$.

solution 1

Let the perpendicular bisector of $AP,BP$ meet at point $O$, those two lined meet at $AD,BC$ at $N,M$ respectively.

As the problem states, denote that $\angle{PBC}=\alpha, \angle{BAP}=2\alpha, \angle {BPC}=3\alpha$. We can express another triple with $\beta$ as well. Since the perpendicular line of $BP$ meets $BC$ at point $M$, $BM=MP, \angle {BPM}=\alpha, \angle {PMC}=2\alpha$, which means that points $A,P,M,B$ are concyclic since $\angle{PAB}=\angle{PMC}$

Similarly, points $A,N,P,B$ are concyclic as well, which means five points $A,N,P,M,B$ are concyclic., $ON=OP=OM$

Moreover, since $\angle{CPM}=\angle{CMP}$, $CP=CM$ so the angle bisector if the angle $MCP$ must be the perpendicular line of $MP$, so as the angle bisector of $\angle{ADP}$, which means those three lines must be concurrent at the circumcenter of the circle containing five points $A,N,P,M,B$ as desired

~ bluesoul

Video solution


https://youtu.be/bDHtM1wijbY [Shorter solution, video covers all day 1 problems]

See Also

2020 IMO (Problems) • Resources
Preceded by
First Problem
1 2 3 4 5 6 Followed by
Problem 2
All IMO Problems and Solutions
Invalid username
Login to AoPS