Difference between revisions of "2020 USAMTS Round 1 Problems/Problem 3"

Line 2: Line 2:
  
 
=Solution 1=
 
=Solution 1=
Let the points be indicated as in the second image in the following link: https://artofproblemsolving.com/community/c5h2314139_usamts_problem_3_round_1_year_32_how_do_you_even_draw_the_diagram
+
We claim the answer is <math>2+\sqrt3.</math> Let <math>HFGE</math> be the new quadrilateral; that is, the quadrilateral determined by the internal bisectors of the angles of <math>ABCD</math>.
 
 
We claim the answer is <math>2+\sqrt3.</math>
 
  
 
Lemma <math>1</math> : <math>HFGE</math> is a rectangle.
 
Lemma <math>1</math> : <math>HFGE</math> is a rectangle.

Revision as of 16:20, 22 October 2020

The bisectors of the internal angles of parallelogram $ABCD$ with $AB>BC$ determine a quadrilateral with the same area as $ABCD$. Determine, with proof, the value of $\frac{AB}{BC}$.

Solution 1

We claim the answer is $2+\sqrt3.$ Let $HFGE$ be the new quadrilateral; that is, the quadrilateral determined by the internal bisectors of the angles of $ABCD$.

Lemma $1$ : $HFGE$ is a rectangle. $1.$ $ABCD$ is a parallelogram. $\angle DAB = \angle DCB,$ as $AE$ bisects $\angle DAB \Rightarrow \angle BAE = \frac{\angle DAB}{2}$ and $CE$ bisects $\angle DCB \Rightarrow \angle DCF = \frac{DCB}{2} \Rightarrow \angle DCF = \angle AJF \Rightarrow \angle BAE = \angle AJF \Rightarrow FG \parallel HE.$ By the same logic, $HF \parallel EG \Rightarrow GFHE$ is a parallelogram. 2. $\angle EAB = \frac{\angle DAB}{2}$ and $\angle ABE = \frac{\angle ABC}{2} \Rightarrow \angle EAB + \angle ABE = \frac{\angle DAB + \angle ABC}{2}$ and $\angle DAB + \angle ABC = 180^\circ \Rightarrow \angle EAB + \angle ABE = 90^\circ \Rightarrow \angle AEB = 90^\circ.$ By $1$ and $2,$ we can conclude that $HFGE$ is a rectangle. $\blacksquare$ Let $AB = a, BC = b,$ and $\angle ABE = \alpha.$ Thus, $[ABCD] = ab\sin(2\alpha).$ $AD \parallel DC \Rightarrow \angle BJC = \angle JCD$ and $\angle JCD = \angle JCB \Rightarrow \angle BJC = \angle JCB \Rightarrow JB = BC =b.$ By the same logic, $AI = AD = b.$ $BE \parallel ED \Rightarrow \angle AIH = \angle ABE = \alpha.$ $HE = AE-AH = a\sin(\alpha) - b\sin(\alpha) = (\alpha - \beta)\sin(\alpha),$ and $EG = EB-GB = a\cos(\alpha) - b\cos(\alpha) = (a-b)\cos(\alpha).$ $[HFGE] = HE * EG = (a-b)^2\sin(\alpha)\cos(\alpha) \Rightarrow ab\sin(2\alpha) = (a-b)^2\text{sin}(\alpha)\text{cos}(\alpha) \Rightarrow ab\sin(2\alpha) = (a-b)^2\sin(\alpha)\cos(\alpha) \Rightarrow 2ab = (a-b)^2 \Rightarrow a^2 + b^2 -2ab = 2ab$ $\Rightarrow a^2 -4ab +b^2 = 0 \Rightarrow a = \frac{4b \pm \sqrt{16b^2 -4b^2}}{2} = 2b\pm b\sqrt{3}$ $\Rightarrow a=b(2\pm\sqrt{3}) \Rightarrow \frac{a}{b} = 2 \pm \sqrt{3}.$ Because $a>b,$ we have $\frac{a}{b} = 2+\sqrt{3}.$

Solution by Sp3nc3r