Difference between revisions of "2020 USOJMO Problems/Problem 4"

(Created page with "Let <math>G</math> be the intersection of <math>AE</math> and <math>(ABCD)</math> and <math>H</math> be the intersection of <math>DF</math> and <math>(ABCD)</math>. [b][color=...")
 
(Solution 6)
(18 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 +
Let <math>ABCD</math> be a convex quadrilateral inscribed in a circle and satisfying <math>DA < AB = BC < CD</math>. Points <math>E</math> and <math>F</math> are chosen on sides <math>CD</math> and <math>AB</math> such that <math>BE \perp AC</math> and <math>EF \parallel BC</math>. Prove that <math>FB = FD</math>.
 +
 +
==Solution==
 
Let <math>G</math> be the intersection of <math>AE</math> and <math>(ABCD)</math> and <math>H</math> be the intersection of <math>DF</math> and <math>(ABCD)</math>.
 
Let <math>G</math> be the intersection of <math>AE</math> and <math>(ABCD)</math> and <math>H</math> be the intersection of <math>DF</math> and <math>(ABCD)</math>.
[b][color=#f00]Claim: <math>GH || FE || BC</math>[/color][/b]
+
 
 +
<b>Claim: <math>GH || FE || BC</math></b>
 +
 
 
By Pascal's on <math>GDCBAH</math>, we see that the intersection of <math>GH</math> and <math>BC</math>, <math>E</math>, and <math>F</math> are collinear. Since <math>FE || BC</math>, we know that <math>HG || BC</math> as well. <math>\blacksquare</math>
 
By Pascal's on <math>GDCBAH</math>, we see that the intersection of <math>GH</math> and <math>BC</math>, <math>E</math>, and <math>F</math> are collinear. Since <math>FE || BC</math>, we know that <math>HG || BC</math> as well. <math>\blacksquare</math>
[b][color=#f00]Claim: <math>FB = FD</math>[/color][/b]
+
 
 
Note that since all cyclic trapezoids are isosceles, <math>HB = GC</math>. Since <math>AB = BC</math> and <math>EB \perp AC</math>, we know that <math>EA = EC</math>, from which we have that <math>DGCA</math> is an isosceles trapezoid and <math>DA = GC</math>. It follows that <math>DA = GC = HB</math>, so <math>BHAD</math> is an isosceles trapezoid, from which <math>FB = FD</math>, as desired. <math>\blacksquare</math>
 
Note that since all cyclic trapezoids are isosceles, <math>HB = GC</math>. Since <math>AB = BC</math> and <math>EB \perp AC</math>, we know that <math>EA = EC</math>, from which we have that <math>DGCA</math> is an isosceles trapezoid and <math>DA = GC</math>. It follows that <math>DA = GC = HB</math>, so <math>BHAD</math> is an isosceles trapezoid, from which <math>FB = FD</math>, as desired. <math>\blacksquare</math>
 +
 +
==Solution 2==
 +
Let <math>G=\overline{FE}\cap\overline{BC}</math>, and let <math>G=\overline{AC}\cap\overline{BE}</math>. Now let <math>x=\angle ACE</math> and <math>y=\angle BCA</math>.
 +
 +
From <math>BA=BC</math> and <math>\overline{BE}\perp \overline{AC}</math>, we have <math>AE=EC</math> so <math>\angle EAC =\angle ECA = x</math>. From cyclic quadrilateral ABCD, <math>\angle ABD = \angle ACD = x</math>. Since <math>BA=BC</math>, <math>\angle BCA = \angle BAC = y</math>.
 +
 +
Now from cyclic quadrilateral ABC and <math>\overline{FE}\parallel \overline{BC}</math> we have <math>\angle FAC = \angle BAC = \pi - \angle BCD = \pi - \angle FED</math>. Thus F, A, D, and E are concyclic, and <math>\angle DFG = \angle DAE = \angle DAC - \angle EAC = \angle DBC - x</math> Let this be statement 1.
 +
 +
Now since <math>\overline{AH}\perp \overline {BH}</math>, triangle ABC gives us <math>\angle BAH + \angle ABG = \frac{\pi}{2}</math>. Thus <math>y+x+\angle GBE=\frac{\pi}{2}</math>, or <math>\angle GBE = \frac{\pi}{2}-x-y</math>.
 +
 +
Right triangle BHC gives <math>\angle HBC = \frac{\pi}{2}-y</math>, and <math>\overline{BC}\parallel \overline{FE}</math> implies <math>\angle BEG=\angle HBC = \frac{\pi}{2}-y.</math>
 +
 +
Now triangle BGE gives <math>\angle BGE = \pi - \angle BEG - \angle GBE = \pi - (\frac{\pi}{2}-y)-(\frac{\pi}{2}-x-y)=x+2y</math>. But <math>\angle FGB = \angle BGE</math>, so <math>\angle FGB=x+2y</math>. Using triangle FGD and statement 1 gives <cmath>\begin{align*}\angle FDG &= \pi - \angle DFG - \angle FGB \\
 +
&= \pi - (\angle DBC - x) - (x + 2y) \\
 +
&= \pi - (\angle GBE + \angle EBC - x) - (x + 2y) \\
 +
&= \pi - ([\frac{\pi}{2}-x-y]+[\frac{\pi}{2}-y]-x)-(x+2y) \\
 +
&= x \\
 +
&= \angle FBD\end{align*}</cmath>
 +
 +
Thus, <math>\angle FDB = \angle FBD</math>, so <math>\boxed{FB=FD}</math> as desired.<math>\blacksquare</math>
 +
 +
~MortemEtInteritum
 +
 +
==Solution 3 (Angle-Chasing)==
 +
Proving that <math>FB=FD</math> is equivalent to proving that <math>\angle FBD= \angle FDB</math>. Note that <math>\angle FBD=\angle ACD</math> because quadrilateral <math>ABCD</math> is cyclic. Also note that <math>\angle BAC=\angle ACB</math> because <math>AB=BC</math>. <math>AE=EC</math>, which follows from the facts that <math>BE \perp AC</math> and <math>AB=AC</math>, implies that <math>\angle CAE= \angle ACE= \angle ACD= \angle FBD</math>. Thus, we would like to prove that triangle <math>FBD</math> is similar to triangle <math>AEC</math>. In order for this to be true, then <math>\angle BFD</math> must equal <math>\angle AEC</math> which implies that <math>\angle AFD</math> must equal <math>\angle AED</math>. In order for this to be true, then quadrilateral <math>AFED</math> must be cyclic. Using the fact that <math>EF \parallel BC</math>, we get that <math>\angle AFE= \angle ABC</math>, and that <math>\angle FED= \angle BCE</math>, and thus we have proved that quadrilateral <math>AFED</math> is cyclic. Therefore, triangle <math>FDB</math> is similar to isosceles triangle <math>AEC</math> from AA and thus <math>FB=FD</math>.
 +
 +
-xXINs1c1veXx
 +
==Solution 4 ==
 +
BE is perpendicular bisector of AC, so <math>\angle ACE = \angle EAC</math>. FE is parallel to BC and ABCD is cyclic, so AFED is also cyclic. <math>\angle AFD = \angle AED = 2 \angle ACE = 2 \angle FBD</math>. Hence, <math>\angle FBD = \angle BDF</math>, <math> FD = FB</math>.
 +
 +
Mathdummy
 +
 +
==Solution 5==
 +
Let <math>G</math> be on <math>AB</math> such that <math>GD \perp DB</math>, and <math>H = GD \cap EB</math>. Then <math>\angle{ADB} = \angle{EDB} = 90^{\circ} - \angle{ABE} \implies \triangle{DAE}</math> is the orthic triangle of <math>\triangle{HGB}</math>. Thus, <math>F</math> is the midpoint of <math>GB</math> and lies on the <math>\perp</math> bisector of <math>DB</math>.
 +
 +
==Solution 6==
 +
Let <math>FE</math> meet <math>AC</math> at <math>J</math>, <math>BE</math> meet <math>AC</math> at <math>S</math>, connect <math>AE, SD</math>.
 +
Denote that <math>\angle{BCA}=\alpha; AB=BC, \angle{BAC}=\angle{BCA}=\alpha</math>, since <math>EF</math> is parallel to <math>BC</math>, <math>\angle{AJF}=\angle{ACB}=\alpha</math>. <math>\angle{AJF}</math>and <math>\angle{EJS}</math> are vertical angle, so they are equal to each other.
 +
<math>BE\bot{AC}</math>,<math>\angle{JES}=90^{\circ}-\alpha</math>, since <math>\angle{EFB}=\angle{AJF}+\angle{FAJ}=2\alpha</math>, we can express <math>\angle{FBE}=180^{\circ}-2\alpha-(90^{\circ}-\alpha)=90^{\circ}-\alpha=
 +
\angle{FEB}</math>, leads to <math>FE=FB</math>
 +
 +
Notice that quadrilateral <math>AFED</math> is a cyclic quadrilateral since <math>\angle{ADE}+\angle{AFE}=\angle{ADE}+\angle{ABC}=180^{\circ}</math>.
 +
 +
Assume <math>\angle{ECA}=\beta</math>, <math>\triangle{AES}</math> is congruent to <math>\triangle{CES}</math> since <math>AS=AS,\angle{ASE}=\angle{BSE}, SE=SE(SAS)</math>, so we can get <math>\angle{EAS}=\beta</math>
 +
Let the circumcircle of <math>AFED</math> meets <math>AC</math> at <math>Q</math>
 +
Now notice that <math>\widehat{QE}=\widehat{QE}, \angle{QAE}=\angle{QDE}=\beta</math>; similarly, <math>\widehat{FQ}=\widehat{FQ}; \angle{FDQ}=\angle{FAQ}=\alpha</math>.
 +
 +
<math>\angle{FDE}=\alpha+\beta; \angle{FED}=\angle{BCD}=\alpha+\beta</math>, it leads to <math>FD=FE</math>.
 +
 +
since <math>FE=FB;FD=FE, DF=BF</math> as desired
 +
~bluesoul

Revision as of 14:33, 9 January 2022

Problem

Let $ABCD$ be a convex quadrilateral inscribed in a circle and satisfying $DA < AB = BC < CD$. Points $E$ and $F$ are chosen on sides $CD$ and $AB$ such that $BE \perp AC$ and $EF \parallel BC$. Prove that $FB = FD$.

Solution

Let $G$ be the intersection of $AE$ and $(ABCD)$ and $H$ be the intersection of $DF$ and $(ABCD)$.

Claim: $GH || FE || BC$

By Pascal's on $GDCBAH$, we see that the intersection of $GH$ and $BC$, $E$, and $F$ are collinear. Since $FE || BC$, we know that $HG || BC$ as well. $\blacksquare$

Note that since all cyclic trapezoids are isosceles, $HB = GC$. Since $AB = BC$ and $EB \perp AC$, we know that $EA = EC$, from which we have that $DGCA$ is an isosceles trapezoid and $DA = GC$. It follows that $DA = GC = HB$, so $BHAD$ is an isosceles trapezoid, from which $FB = FD$, as desired. $\blacksquare$

Solution 2

Let $G=\overline{FE}\cap\overline{BC}$, and let $G=\overline{AC}\cap\overline{BE}$. Now let $x=\angle ACE$ and $y=\angle BCA$.

From $BA=BC$ and $\overline{BE}\perp \overline{AC}$, we have $AE=EC$ so $\angle EAC =\angle ECA = x$. From cyclic quadrilateral ABCD, $\angle ABD = \angle ACD = x$. Since $BA=BC$, $\angle BCA = \angle BAC = y$.

Now from cyclic quadrilateral ABC and $\overline{FE}\parallel \overline{BC}$ we have $\angle FAC = \angle BAC = \pi - \angle BCD = \pi - \angle FED$. Thus F, A, D, and E are concyclic, and $\angle DFG = \angle DAE = \angle DAC - \angle EAC = \angle DBC - x$ Let this be statement 1.

Now since $\overline{AH}\perp \overline {BH}$, triangle ABC gives us $\angle BAH + \angle ABG = \frac{\pi}{2}$. Thus $y+x+\angle GBE=\frac{\pi}{2}$, or $\angle GBE = \frac{\pi}{2}-x-y$.

Right triangle BHC gives $\angle HBC = \frac{\pi}{2}-y$, and $\overline{BC}\parallel \overline{FE}$ implies $\angle BEG=\angle HBC = \frac{\pi}{2}-y.$

Now triangle BGE gives $\angle BGE = \pi - \angle BEG - \angle GBE = \pi - (\frac{\pi}{2}-y)-(\frac{\pi}{2}-x-y)=x+2y$. But $\angle FGB = \angle BGE$, so $\angle FGB=x+2y$. Using triangle FGD and statement 1 gives \begin{align*}\angle FDG &= \pi - \angle DFG - \angle FGB \\ &= \pi - (\angle DBC - x) - (x + 2y) \\ &= \pi - (\angle GBE + \angle EBC - x) - (x + 2y) \\ &= \pi - ([\frac{\pi}{2}-x-y]+[\frac{\pi}{2}-y]-x)-(x+2y) \\ &= x \\ &= \angle FBD\end{align*}

Thus, $\angle FDB = \angle FBD$, so $\boxed{FB=FD}$ as desired.$\blacksquare$

~MortemEtInteritum

Solution 3 (Angle-Chasing)

Proving that $FB=FD$ is equivalent to proving that $\angle FBD= \angle FDB$. Note that $\angle FBD=\angle ACD$ because quadrilateral $ABCD$ is cyclic. Also note that $\angle BAC=\angle ACB$ because $AB=BC$. $AE=EC$, which follows from the facts that $BE \perp AC$ and $AB=AC$, implies that $\angle CAE= \angle ACE= \angle ACD= \angle FBD$. Thus, we would like to prove that triangle $FBD$ is similar to triangle $AEC$. In order for this to be true, then $\angle BFD$ must equal $\angle AEC$ which implies that $\angle AFD$ must equal $\angle AED$. In order for this to be true, then quadrilateral $AFED$ must be cyclic. Using the fact that $EF \parallel BC$, we get that $\angle AFE= \angle ABC$, and that $\angle FED= \angle BCE$, and thus we have proved that quadrilateral $AFED$ is cyclic. Therefore, triangle $FDB$ is similar to isosceles triangle $AEC$ from AA and thus $FB=FD$.

-xXINs1c1veXx

Solution 4

BE is perpendicular bisector of AC, so $\angle ACE = \angle EAC$. FE is parallel to BC and ABCD is cyclic, so AFED is also cyclic. $\angle AFD = \angle AED = 2 \angle ACE = 2 \angle FBD$. Hence, $\angle FBD = \angle BDF$, $FD = FB$.

Mathdummy

Solution 5

Let $G$ be on $AB$ such that $GD \perp DB$, and $H = GD \cap EB$. Then $\angle{ADB} = \angle{EDB} = 90^{\circ} - \angle{ABE} \implies \triangle{DAE}$ is the orthic triangle of $\triangle{HGB}$. Thus, $F$ is the midpoint of $GB$ and lies on the $\perp$ bisector of $DB$.

Solution 6

Let $FE$ meet $AC$ at $J$, $BE$ meet $AC$ at $S$, connect $AE, SD$. Denote that $\angle{BCA}=\alpha; AB=BC, \angle{BAC}=\angle{BCA}=\alpha$, since $EF$ is parallel to $BC$, $\angle{AJF}=\angle{ACB}=\alpha$. $\angle{AJF}$and $\angle{EJS}$ are vertical angle, so they are equal to each other. $BE\bot{AC}$,$\angle{JES}=90^{\circ}-\alpha$, since $\angle{EFB}=\angle{AJF}+\angle{FAJ}=2\alpha$, we can express $\angle{FBE}=180^{\circ}-2\alpha-(90^{\circ}-\alpha)=90^{\circ}-\alpha= \angle{FEB}$, leads to $FE=FB$

Notice that quadrilateral $AFED$ is a cyclic quadrilateral since $\angle{ADE}+\angle{AFE}=\angle{ADE}+\angle{ABC}=180^{\circ}$.

Assume $\angle{ECA}=\beta$, $\triangle{AES}$ is congruent to $\triangle{CES}$ since $AS=AS,\angle{ASE}=\angle{BSE}, SE=SE(SAS)$, so we can get $\angle{EAS}=\beta$ Let the circumcircle of $AFED$ meets $AC$ at $Q$ Now notice that $\widehat{QE}=\widehat{QE}, \angle{QAE}=\angle{QDE}=\beta$; similarly, $\widehat{FQ}=\widehat{FQ}; \angle{FDQ}=\angle{FAQ}=\alpha$.

$\angle{FDE}=\alpha+\beta; \angle{FED}=\angle{BCD}=\alpha+\beta$, it leads to $FD=FE$.

since $FE=FB;FD=FE, DF=BF$ as desired ~bluesoul