Difference between revisions of "2021 AIME II Problems/Problem 1"

(Solution 5 (very, very easy and quick))
m (Remark)
(31 intermediate revisions by 2 users not shown)
Line 3: Line 3:
  
 
==Solution 1==
 
==Solution 1==
Recall* the the arithmetic mean of all the <math>n</math> digit palindromes is just the average of the largest and smallest <math>n</math> digit palindromes, and in this case the <math>2</math> palindromes are <math>101</math> and <math>999</math> and <math>\frac{101+999}{2}=550</math> and <math>\boxed{550}</math> is the final answer.
+
Recall that the arithmetic mean of all the <math>n</math> digit palindromes is just the average of the largest and smallest <math>n</math> digit palindromes, and in this case the <math>2</math> palindromes are <math>101</math> and <math>999</math> and <math>\frac{101+999}{2}=550</math> and <math>\boxed{550}</math> is the final answer.
  
 
~ math31415926535
 
~ math31415926535
  
 
==Solution 2==
 
==Solution 2==
For any palindrome <math>\underline{ABA}</math>, note that <math>\underline{ABA}</math>is 100A + 10B + A which is also 101A + 10B.  
+
For any palindrome <math>\underline{ABA}</math>, note that <math>\underline{ABA}</math> is 100A + 10B + A, which is also 101A + 10B.  
 
The average for A is 5 since A can be any of 1, 2, 3, 4, 5, 6, 7, 8, or 9. The average for B is 4.5 since B is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Therefore, the answer is 505 + 45 = <math>\boxed{550}</math>.
 
The average for A is 5 since A can be any of 1, 2, 3, 4, 5, 6, 7, 8, or 9. The average for B is 4.5 since B is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Therefore, the answer is 505 + 45 = <math>\boxed{550}</math>.
  
Line 14: Line 14:
  
 
==Solution 3 (Symmetry and Generalization)==
 
==Solution 3 (Symmetry and Generalization)==
For any three-digit palindrome <math>\underline{ABA},</math> where <math>A</math> and <math>B</math> are digits with <math>A\neq0,</math> note that <math>\underline{(10-A)(9-B)(10-A)}</math> must be another palindrome by symmetry. Therefore, we can pair each three-digit palindrome uniquely with another three-digit palindrome so that they sum to  
+
For every three-digit palindrome <math>\underline{ABA}</math> with <math>A\in\{1,2,3,4,5,6,7,8,9\}</math> and <math>B\in\{0,1,2,3,4,5,6,7,8,9\},</math> note that <math>\underline{(10-A)(9-B)(10-A)}</math> must be another palindrome by symmetry. Therefore, we can pair each three-digit palindrome uniquely with another three-digit palindrome so that they sum to  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\underline{ABA}+\underline{(10-A)(9-B)(10-A)}&=\left[100A+10B+A\right]+\left[100(10-A)+10(9-B)+(10-A)\right] \\
 
\underline{ABA}+\underline{(10-A)(9-B)(10-A)}&=\left[100A+10B+A\right]+\left[100(10-A)+10(9-B)+(10-A)\right] \\
Line 23: Line 23:
 
For instances:
 
For instances:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
101+999&=1100, \\
+
171+929&=1100, \\
 
262+838&=1100, \\
 
262+838&=1100, \\
373+727&=1100, \\
+
303+797&=1100, \\
 
414+686&=1100, \\
 
414+686&=1100, \\
 
545+555&=1100,
 
545+555&=1100,
Line 33: Line 33:
 
From this symmetry, the arithmetic mean of all the three-digit palindromes is <math>\frac{1110}{2}=\boxed{550}.</math>
 
From this symmetry, the arithmetic mean of all the three-digit palindromes is <math>\frac{1110}{2}=\boxed{550}.</math>
  
~MRENTHUSIASM
+
<u><b>Remark</b></u>
 
 
==Solution 4==
 
<cmath>\begin{align*}
 
\sum_{A = 1}^9 \sum_{B = 0}^9 \underline{ABA} &= \sum_{A = 1}^9 \sum_{B = 0}^9 \left( 101 A + 10 B \right) \\
 
&= \sum_{A = 1}^9 \sum_{B = 0}^9 101 A + \sum_{A = 1}^9 \sum_{B = 0}^9 10 B \\
 
&= 101 \cdot 10 \sum_{A = 1}^9 A + 10 \cdot 9 \sum_{B = 0}^9 B \\
 
&= 1010 \cdot 45 + 90 \cdot 45 \\
 
&=
 
\end{align*}</cmath>
 
  
- A bit too complicated of a solution - somebody please fix. - ARCTICTURN
+
By the Multiplication Principle, there are <math>9\cdot10=90</math> three-digit palindromes in total. Their sum is <math>1100\cdot45=49500,</math> as we can match them into <math>45</math> pairs such that the sum of each pair is <math>1100.</math>
  
Doriding is the original author. I will wait for him to come back. ~MRENTHUSIASM
+
~MRENTHUSIASM
  
==Solution 5 (very, very easy and quick)==
+
==Solution 4 (Very, Very Easy and Quick)==
 
We notice that a three-digit palindrome looks like this <math>\overline{aba}</math>
 
We notice that a three-digit palindrome looks like this <math>\overline{aba}</math>
  
Line 66: Line 57:
  
 
~<math>\alpha b \alpha</math>
 
~<math>\alpha b \alpha</math>
 +
 +
==Solution 5 (Extremely Fast Solution)==
 +
 +
The average values of the first and last digits are each <math>5,</math> and the average value of the middle digit is <math>4.5,</math> so the average of all three-digit palindromes is <math>5\cdot 10^2+4.5\cdot 10+5=\boxed{550}.</math>
 +
 +
~MathIsFun286
 +
 +
==Remark==
 +
Visit the [https://artofproblemsolving.com/wiki/index.php/Talk:2021_AIME_II_Problems/Problem_1 Discussion Page] for questions and further generalizations.
 +
 +
~MRENTHUSIASM
  
 
==Video Solution==
 
==Video Solution==
Line 71: Line 73:
  
 
==See Also==
 
==See Also==
 
 
{{AIME box|year=2021|n=II|before=First Problem|num-a=2}}
 
{{AIME box|year=2021|n=II|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:16, 3 May 2021

Problem

Find the arithmetic mean of all the three-digit palindromes. (Recall that a palindrome is a number that reads the same forward and backward, such as $777$ or $383$.)

Solution 1

Recall that the arithmetic mean of all the $n$ digit palindromes is just the average of the largest and smallest $n$ digit palindromes, and in this case the $2$ palindromes are $101$ and $999$ and $\frac{101+999}{2}=550$ and $\boxed{550}$ is the final answer.

~ math31415926535

Solution 2

For any palindrome $\underline{ABA}$, note that $\underline{ABA}$ is 100A + 10B + A, which is also 101A + 10B. The average for A is 5 since A can be any of 1, 2, 3, 4, 5, 6, 7, 8, or 9. The average for B is 4.5 since B is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Therefore, the answer is 505 + 45 = $\boxed{550}$.

- ARCTICTURN

Solution 3 (Symmetry and Generalization)

For every three-digit palindrome $\underline{ABA}$ with $A\in\{1,2,3,4,5,6,7,8,9\}$ and $B\in\{0,1,2,3,4,5,6,7,8,9\},$ note that $\underline{(10-A)(9-B)(10-A)}$ must be another palindrome by symmetry. Therefore, we can pair each three-digit palindrome uniquely with another three-digit palindrome so that they sum to \begin{align*} \underline{ABA}+\underline{(10-A)(9-B)(10-A)}&=\left[100A+10B+A\right]+\left[100(10-A)+10(9-B)+(10-A)\right] \\ &=\left[100A+10B+A\right]+\left[1000-100A+90-10B+10-A\right] \\ &=1000+90+10 \\ &=1100. \end{align*} For instances: \begin{align*} 171+929&=1100, \\ 262+838&=1100, \\ 303+797&=1100, \\ 414+686&=1100, \\ 545+555&=1100, \end{align*} and so on.

From this symmetry, the arithmetic mean of all the three-digit palindromes is $\frac{1110}{2}=\boxed{550}.$

Remark

By the Multiplication Principle, there are $9\cdot10=90$ three-digit palindromes in total. Their sum is $1100\cdot45=49500,$ as we can match them into $45$ pairs such that the sum of each pair is $1100.$

~MRENTHUSIASM

Solution 4 (Very, Very Easy and Quick)

We notice that a three-digit palindrome looks like this $\overline{aba}$

And we know a can be any number from 1-9, and b can be any number from 0-9, so there are $9\times{10}=90$ three-digit palindromes

We want to find the sum of these 90 palindromes and divide it by 90 to find the arithmetic mean

How can we do that? Instead of adding the numbers up, we can break each palindrome into two parts: 101a+10b

Thus, all of these 90 palindromes can be broken into this form

Thus, the sum of these 90 palindromes will be $101\times{(1+2+...+9)}\times{10}+10\times{(0+1+2+...+9)}\times{9}$, because each a will be in 10 different palindromes (since for each a, there are 10 choices for b). The same logic explains why there is a times 9 when computing the total sum of b.

We get a sum of $45\times{1100}$

But don't compute this! There's no need. Divide this by 90 and you will get $\boxed{550}$

~$\alpha b \alpha$

Solution 5 (Extremely Fast Solution)

The average values of the first and last digits are each $5,$ and the average value of the middle digit is $4.5,$ so the average of all three-digit palindromes is $5\cdot 10^2+4.5\cdot 10+5=\boxed{550}.$

~MathIsFun286

Remark

Visit the Discussion Page for questions and further generalizations.

~MRENTHUSIASM

Video Solution

https://www.youtube.com/watch?v=jDP2PErthkg

See Also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png