Difference between revisions of "2021 AIME II Problems/Problem 12"

(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
Since we are asked to find <math>\tan \theta</math>, we can find <math>\sin \theta</math> and <math>\cos \theta</math> separately and then use those values to find <math>\tan \theta</math>. Let us first draw a diagram of this quadrilateral.
+
We can't have a solution without a problem.
 
 
[asy]
 
unitsize(4cm);
 
pair A,B,C,D,X;
 
A = (0,0);
 
B = (1,0);
 
C = (1.25,-1);
 
D = (-0.75,-0.75);
 
draw(A--B--C--D--cycle,black+1bp);
 
X = intersectionpoint(A--C,B--D);
 
draw(A--C);
 
draw(B--D);
 
label("<math>A</math>",A,NW);
 
abel("<math>B</math>",B,NE);
 
label("<math>C</math>",C,SE);
 
label("<math>D</math>",D,SW);
 
dot(X);
 
label("<math>X</math>",X,S);
 
label("<math>5</math>",(A+B)/2,N)
 
label("<math>6</math>",(B+C)/2,E);
 
label("<math>9</math>",(C+D)/2,S);
 
label("<math>7</math>",(D+A)/2,W);
 
label("<math>\theta</math>",X,2.5E);
 
label("<math>a</math>",(A+X)/2,NE);
 
label("<math>b</math>",(B+X)/2,NW);
 
label("<math>c</math>",(C+X)/2,SW);
 
label("<math>d</math>",(D+X)/2,SE);
 
[/asy]
 
 
 
~ my_aops_lessons
 
 
 
  
 
==See also==
 
==See also==
 
{{AIME box|year=2021|n=II|num-b=11|num-a=13}}
 
{{AIME box|year=2021|n=II|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:51, 22 March 2021

Problem

A convex quadrilateral has area $30$ and side lengths $5, 6, 9,$ and $7,$ in that order. Denote by $\theta$ the measure of the acute angle formed by the diagonals of the quadrilateral. Then $\tan \theta$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

We can't have a solution without a problem.

See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS