# 2021 AIME II Problems/Problem 12

## Problem

A convex quadrilateral has area $30$ and side lengths $5, 6, 9,$ and $7,$ in that order. Denote by $\theta$ the measure of the acute angle formed by the diagonals of the quadrilateral. Then $\tan \theta$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

## Solution

Since we are asked to find $\tan \theta$, we can find $\sin \theta$ and $\cos \theta$ separately and then use those values to find $\tan \theta$. Let us first draw a diagram of this quadrilateral.

[asy] unitsize(4cm); pair A,B,C,D,X; A = (0,0); B = (1,0); C = (1.25,-1); D = (-0.75,-0.75); draw(A--B--C--D--cycle,black+1bp); X = intersectionpoint(A--C,B--D); draw(A--C); draw(B--D); label(" $A$",A,NW); abel(" $B$",B,NE); label(" $C$",C,SE); label(" $D$",D,SW); dot(X); label(" $X$",X,S); label(" $5$",(A+B)/2,N) label(" $6$",(B+C)/2,E); label(" $9$",(C+D)/2,S); label(" $7$",(D+A)/2,W); label(" $\theta$",X,2.5E); label(" $a$",(A+X)/2,NE); label(" $b$",(B+X)/2,NW); label(" $c$",(C+X)/2,SW); label(" $d$",(D+X)/2,SE); [/asy]

~ my_aops_lessons

## See also

 2021 AIME II (Problems • Answer Key • Resources) Preceded byProblem 11 Followed byProblem 13 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS