Difference between revisions of "2021 AIME II Problems/Problem 14"

(Problem)
(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
We can't have a solution without a problem.
+
Let <math>M</math> be the midpoint of <math>BC</math>. Because <math>\angle{OAX}=\angle{OGX}=\angle{OGY}=\angle{OMY}=90^o</math>, <math>AXOG</math> and <math>OMYG</math> are cyclic, so <math>O</math> is the center of the spiral similarity sending <math>AM</math> to <math>XY</math>, and <math>\angle{XOY}=\angle{AOM}</math>. Because <math>\angle{AOM}=2\angle{BCA}+\angle{BAC}</math>, it's easy to get <math>\frac{585}{7} \implies \boxed{592}</math> from here.
 +
 
 +
~Lcz
  
 
==See also==
 
==See also==
 
{{AIME box|year=2021|n=II|num-b=13|num-a=15}}
 
{{AIME box|year=2021|n=II|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:04, 22 March 2021

Problem

Let $\Delta ABC$ be an acute triangle with circumcenter $O$ and centroid $G$. Let $X$ be the intersection of the line tangent to the circumcircle of $\Delta ABC$ at $A$ and the line perpendicular to $GO$ at $G$. Let $Y$ be the intersection of lines $XG$ and $BC$. Given that the measures of $\angle ABC, \angle BCA,$ and $\angle XOY$ are in the ratio $13 : 2 : 17,$ the degree measure of $\angle BAC$ can be written as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Let $M$ be the midpoint of $BC$. Because $\angle{OAX}=\angle{OGX}=\angle{OGY}=\angle{OMY}=90^o$, $AXOG$ and $OMYG$ are cyclic, so $O$ is the center of the spiral similarity sending $AM$ to $XY$, and $\angle{XOY}=\angle{AOM}$. Because $\angle{AOM}=2\angle{BCA}+\angle{BAC}$, it's easy to get $\frac{585}{7} \implies \boxed{592}$ from here.

~Lcz

See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png