Difference between revisions of "2021 AIME II Problems/Problem 4"

(Solution 3 (Somewhat Bashy))
(Solution 3 (Somewhat Bashy))
Line 22: Line 22:
 
Simplifying this further, we get <math>(m^{3} - 3mn + am + b) + i(3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n}) = 0</math>
 
Simplifying this further, we get <math>(m^{3} - 3mn + am + b) + i(3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n}) = 0</math>
  
Hence, <math>m^{3} - 3mn + am + b = 0</math> and <math>3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n} = 0 \Rightarrow 3m^{2} - n + a = 0</math> \rightarrow (1)
+
Hence, <math>m^{3} - 3mn + am + b = 0</math> and <math>3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n} = 0 \Rightarrow 3m^{2} - n + a = 0 \rightarrow (1)</math>
  
 
In the second equation, we get
 
In the second equation, we get
Line 28: Line 28:
 
Simplifying this further, we get <math>(m^{3} + m^{2}c - nc - 3mn + d) + i(3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n}) = 0</math>
 
Simplifying this further, we get <math>(m^{3} + m^{2}c - nc - 3mn + d) + i(3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n}) = 0</math>
  
Hence, <math>m^{3} + m^{2}c - nc - 3mn + d = 0</math> and <math>3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n} = 0 \Rightarrow 3m^{2} - n + 2mc = 0</math> \rightarrow (2)
+
Hence, <math>m^{3} + m^{2}c - nc - 3mn + d = 0</math> and <math>3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n} = 0 \Rightarrow 3m^{2} - n + 2mc = 0 \rightarrow (2)</math>
  
 
-Arnav Nigam
 
-Arnav Nigam

Revision as of 02:40, 23 March 2021

Problem

There are real numbers $a, b, c,$ and $d$ such that $-20$ is a root of $x^3 + ax + b$ and $-21$ is a root of $x^3 + cx^2 + d.$ These two polynomials share a complex root $m + \sqrt{n} \cdot i,$ where $m$ and $n$ are positive integers and $i = \sqrt{-1}.$ Find $m+n.$

Solution 1

Conjugate root theorem

Solution in progress

~JimY

Solution 2

Solution 3 (Somewhat Bashy)

$(-20)^{3} + (-20)a + b = 0$, hence $-20a + b = 8000$

Also, $(-21)^{3} + c(-21)^{2} + d = 0$, hence $441c + d = 9261$

$m + i \sqrt{n}$ satisfies both $\Rightarrow$ we can put it in both equations and equate to 0.

In the first equation, we get $(m + i \sqrt{n})^{3} + a(m + i \sqrt{n}) + b = 0$ Simplifying this further, we get $(m^{3} - 3mn + am + b) + i(3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n}) = 0$

Hence, $m^{3} - 3mn + am + b = 0$ and $3m^{2} \sqrt{n} - n\sqrt{n} + a\sqrt{n} = 0 \Rightarrow 3m^{2} - n + a = 0 \rightarrow (1)$

In the second equation, we get $(m + i \sqrt{n})^{3} + c(m + i \sqrt{n})^{2} + d = 0$ Simplifying this further, we get $(m^{3} + m^{2}c - nc - 3mn + d) + i(3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n}) = 0$

Hence, $m^{3} + m^{2}c - nc - 3mn + d = 0$ and $3m^{2} \sqrt{n} - n\sqrt{n} + 2mc\sqrt{n} = 0 \Rightarrow 3m^{2} - n + 2mc = 0 \rightarrow (2)$

-Arnav Nigam

See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png