Difference between revisions of "2021 AIME II Problems/Problem 9"

m (Proof 2 (Bézout's Identity))
(Proof 2 (Bézout's Identity): Proof complete.)
Line 36: Line 36:
 
Let <math>d=\gcd\left(u^a-1,u^b-1\right).</math> It follows that <math>u^a\equiv1\pmod{d}</math> and <math>u^b\equiv1\pmod{d}.</math>
 
Let <math>d=\gcd\left(u^a-1,u^b-1\right).</math> It follows that <math>u^a\equiv1\pmod{d}</math> and <math>u^b\equiv1\pmod{d}.</math>
  
By Bézout's Identity, there exist integers <math>x</math> and <math>y</math> for which <math>ax+by=\gcd(a,b),</math> thus we have 
+
By Bézout's Identity, there exist integers <math>x</math> and <math>y</math> for which <math>ax+by=\gcd(a,b),</math> thus <cmath>u^{\gcd(a,b)}=u^{ax+by}=\left(u^a\right)^x\left(u^b\right)^y\equiv1\pmod{d},</cmath>
 +
from which <math>u^{\gcd(a,b)}-1\equiv0\pmod{d}</math> with <math>u^{\gcd(a,b)}-1\geq d.</math>
  
<b>Solution in progress. A million thanks for not editing.</b>
+
More precisely, note that
 +
<cmath>\begin{align*}
 +
u^a-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{a-\gcd{(a,b)}}+u^{a-2\gcd{(a,b)}}+u^{a-3\gcd{(a,b)}}+\cdots+1\right), \\
 +
u^b-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{b-\gcd{(a,b)}}+u^{b-2\gcd{(a,b)}}+u^{b-3\gcd{(a,b)}}+\cdots+1\right).
 +
\end{align*}</cmath>
 +
Since u^{\gcd(a,b)}-1 is a common divisor of <math>u^a-1</math> and <math>u^b-1,</math> we conclude that <math>u^{\gcd(a,b)}-1=d,</math> and the proof is complete.
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 05:15, 1 April 2021

Problem

Find the number of ordered pairs $(m, n)$ such that $m$ and $n$ are positive integers in the set $\{1, 2, ..., 30\}$ and the greatest common divisor of $2^m + 1$ and $2^n - 1$ is not $1$.

Solution 1

We make use of the (olympiad number theory) lemma that $\gcd(2^a-1,2^b-1)=2^{\gcd(a,b)}-1$.

Noting $\gcd(2^m+1,2^m-1)=\gcd(2^m+1,2)=1$, we have (by difference of squares)\[\gcd(2^m+1,2^n-1) \neq 1 \iff \gcd(2^{2m}-1,2^n-1) \neq \gcd(2^m-1,2^n-1)\]\[\iff 2^{\gcd(2m,n)}-1 \neq 2^{\gcd(m,n)}-1 \iff \gcd(2m,n) \neq \gcd(m,n) \iff \nu_2(m)<\nu_2(n).\] It is now easy to calculate the answer (with casework on $\nu_2(m)$) as $15 \cdot 15+8 \cdot 7+4 \cdot 3+2 \cdot 1=\boxed{295}$.

~Lcz

Solution 2 (Generalized and Comprehensive)

Claim (Solution 1's Lemma)

If $u,a,$ and $b$ are positive integers for which $u\geq2,$ then $\gcd\left(u^a-1,u^b-1\right)=u^{\gcd(a,b)}-1.$

There are two proofs to this claim, as shown below.

~MRENTHUSIASM

Proof 1 (Euclidean Algorithm)

If $a=b,$ then $\gcd(a,b)=a=b,$ from which the claim is clearly true.

Otherwise, let $a>b$ without the loss of generality. Note that for all integers $p>q>0,$ the Euclidean Algorithm states that \[\gcd(p,q)=\gcd(p-q,q)=\cdots=\gcd(q,p\text{ mod }q).\] We apply this result repeatedly to reduce the larger number: \[\gcd\left(u^a-1,u^b-1\right)=\gcd\left(u^b-1,u^a-1-u^{a-b}\left(u^b-1\right)\right)=\gcd\left(u^b-1,u^{a-b}-1\right).\] Continuing, we will get \begin{align*} \gcd\left(u^a-1,u^b-1\right)&=\cdots \\ &=\gcd\left(u^b-1,u^{a-b}-1\right) \\ &=\cdots \\ &=\gcd\left(u^{\gcd(a,b)}-1,u^{\gcd(a,b)}-1\right) \\ &=u^{\gcd(a,b)}-1, \end{align*} from which the proof is complete.

~MRENTHUSIASM

Proof 2 (Bézout's Identity)

Let $d=\gcd\left(u^a-1,u^b-1\right).$ It follows that $u^a\equiv1\pmod{d}$ and $u^b\equiv1\pmod{d}.$

By Bézout's Identity, there exist integers $x$ and $y$ for which $ax+by=\gcd(a,b),$ thus \[u^{\gcd(a,b)}=u^{ax+by}=\left(u^a\right)^x\left(u^b\right)^y\equiv1\pmod{d},\] from which $u^{\gcd(a,b)}-1\equiv0\pmod{d}$ with $u^{\gcd(a,b)}-1\geq d.$

More precisely, note that \begin{align*} u^a-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{a-\gcd{(a,b)}}+u^{a-2\gcd{(a,b)}}+u^{a-3\gcd{(a,b)}}+\cdots+1\right), \\ u^b-1&=\left(u^{\gcd(a,b)}-1\right)\left(u^{b-\gcd{(a,b)}}+u^{b-2\gcd{(a,b)}}+u^{b-3\gcd{(a,b)}}+\cdots+1\right). \end{align*} Since u^{\gcd(a,b)}-1 is a common divisor of $u^a-1$ and $u^b-1,$ we conclude that $u^{\gcd(a,b)}-1=d,$ and the proof is complete.

~MRENTHUSIASM

Solution

Solution in progress. A million thanks for not editing.

~MRENTHUSIASM

See Also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png