Difference between revisions of "2021 AIME I Problems/Problem 3"

Problem

Find the number of positive integers less than $1000$ that can be expressed as the difference of two integral powers of $2.$

Solution

We want to find the number of positive integers $n<1000$ which can be written in the form $n = 2^a - 2^b$ for some non-negative integers $a > b \ge 0$ (note that if $a=b$, then $2^a-2^b = 0$). We first observe $a$ must be at most 10; if $a \ge 11$, then $2^a - 2^b \ge 2^{10} > 1000$. As $2^{10} = 1024 \approx 1000$, we can first choose two different numbers $a > b$ from the set $\{0,1,2,\ldots,10\}$ in $\binom{10}{2}=55$ ways. This includes $(a,b) = (10,0)$, $(10,1)$, $(10,2)$, $(10,3)$, $(10,4)$ which are invalid as $2^a - 2^b > 1000$ in this case. For all other choices $a$ and $b$, the value of $2^a - 2^b$ is less than 1000.

We claim that for all other choices of $a$ and $b$, the values of $2^a - 2^b$ are pairwise distinct. More specifically, if $(a_1,b_1) \neq (a_2,b_2)$ where $10 \ge a_1 > b_1 \ge 0$ and $10 \ge a_2 > b_2 \ge 0$, we must show that $2^{a_1}-2^{b_1} \neq 2^{a_2} - 2^{b_2}$. Suppose otherwise for sake of contradiction; rearranging yields $2^{a_1}+2^{b_2} = 2^{a_2}+2^{b_1}$. We use the fact that every positive integer has a unique binary representation:

If $a_1 \neq b_2$ then $\{a_1,b_2\} = \{a_2,b_1\}$; from here we can deduce either $a_1=a_2$ and $b_1=b_2$ (contradicting the assumption that $(a_1,b_1) \neq (a_2,b_2)$, or $a_1=b_1$ and $a_2=b_2$ (contradicting the assumption $a_1>b_1$ and $a_2>b_2$).

If $a_1 = b_2$ then $2^{a_1}+2^{b_2} = 2 \times 2^{a_1}$, and it follows that $a_1=a_2=b_1=b_2$, also contradicting the assumption $(a_1,b_1) \neq (a_2,b_2)$. Hence we obtain contradiction.

Then there are $\binom{10}{2}-5$ choices for $(a,b)$ for which $2^a - 2^b$ is a positive integer less than 1000; by the above claim, each choice of $(a,b)$ results in a different positive integer $n$. Then there are $55-5 = \boxed{050}$ integers which can be expressed as a difference of two powers of 2.